Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cogeneration is one of the leading technologies. Over time, it has been activated by almost all developed and actively developing countries in the world. However, achieving high energy efficiency when investing in such production is not an absolute rule but a matter of a thorough technical and economic assessment of the existing conditions. The management teams of textile enterprises usually focus on improving the economic and operational results, but despite the benefits of cogeneration, they do not want to take risks in its implementation because it is related to large strategic investments in the sector. Conducting research to identify and analyze the specific operating conditions of the textile enterprise in question will allow for the analysis of the possibility of introducing cogeneration. Looking at the structure of the energy consumption of the two types of energy (heat and electricity), the dynamics of prices and the geographical location are a prerequisites for studying the possibilities of introducing joint production of heat and electricity at a large textile enterprise. In the publication, an analysis of primary energy consumption was performed, a heat balance of the considered enterprise was drawn up, and objective economic and technical parameters based on the characteristics of the technology were derived. Based on the analysis of the obtained results, conclusions have been drawn regarding the possibilities of implementing joint extraction of heat and electricity in textile enterprises. The scientific novelty has been demonstrated by applying a new approach for a complete solution, aiming to achieve cleaner production and increase the energy efficiency of the considered textile enterprise.
PL
Kogeneracja jest jedną z wiodących technologii. Z biegiem czasu została wprowadzona przez prawie wszystkie rozwinięte i aktywnie rozwijające się kraje na świecie. Jednak osiągnięcie wysokiej efektywności energetycznej przy inwestowaniu w taką produkcję nie jest absolutną regułą, ale kwestią dokładnej oceny technicznej i ekonomicznej istniejących warunków. Zarządy przedsiębiorstw tekstylnych zazwyczaj koncentrują się na poprawie wyników ekonomicznych i operacyjnych, ale pomimo korzyści płynących z kogeneracji, nie chcą podejmować ryzyka związanego z jej wdrożeniem, ponieważ wiąże się to z dużymi inwestycjami strategicznymi w sektorze. Przeprowadzenie badań mających na celu identyfikację i analizę specyficznych warunków funkcjonowania danego przedsiębiorstwa włókienniczego pozwoli na analizę możliwości wprowadzenia kogeneracji. Spojrzenie na strukturę zużycia dwóch rodzajów energii (ciepła i energii elektrycznej), dynamikę cen oraz położenie geograficzne są przesłankami do zbadania możliwości wprowadzenia wspólnej produkcji ciepła i energii elektrycznej w dużym przedsiębiorstwie włókienniczym. W artykule przeprowadzono analizę zużycia energii pierwotnej, sporządzono bilans cieplny rozpatrywanego przedsiębiorstwa oraz wyprowadzono obiektywne parametry ekonomiczne i techniczne oparte na charakterystyce technologii. Na podstawie analizy uzyskanych wyników wyciągnięto wnioski dotyczące możliwości wdrożenia wspólnego pozyskiwania ciepła i energii elektrycznej w przedsiębiorstwach tekstylnych. Wykazano nowatorskie podejście naukowe poprzez zastosowanie nowego podejścia do kompletnego rozwiązania, mającego na celu osiągnięcie czystszej produkcji i zwiększenie efektywności energetycznej rozważanego przedsiębiorstwa tekstylnego.
EN
As a result of the development of industrial organic synthesis, the output of secondary processes in oil processing is becoming increasingly diverse. Production volume is a nodal indicator that is limited by the available production capacity, equipment configuration and the monetary equivalent of energy costs. In order to determine the technological potential and cost of produced petroleum products, it is necessary to create a complex that includes all stages of production. The most important criterion for evaluating the energy efficiency of an oil refinery is the relative energy consumption, which depends on its complexity. This criterion can be presented as a set of the different types of energy resources used in the course of production and applied to the total production. For this purpose, the energy resources invested in the given technology should be referred to a finished product or raw material. The peculiarity of oil refineries is that, due to the variety of oil derivatives, energy consumption, as a set of different installations, is much more appropriate to relate not to individual target products but to the amount of processed oil. In practice, all types of energy carriers must be converted to an equivalent value. This paper provides an in-depth analysis of the energy costs of oil refineries. The collection of energy flows of different types and dimensions is the subject of the present study. Based on this, a method is presented that allows a comparison of the energy efficiency of refineries with different capacity and configuration of crude oil processing stages based on the energy index and the equivalent distillation performance.
PL
W wyniku rozwoju przemysłowej syntezy organicznej wydajność procesów wtórnych w przetwórstwie ropy naftowej staje się coraz bardziej zróżnicowana. Wielkość produkcji to wskaźnik węzłowy, który jest ograniczony dostępnymi zdolnościami produkcyjnymi, konfiguracją urządzeń oraz ekwiwalentem pieniężnym kosztów energii. W celu określenia potencjału technologicznego i kosztu wytwarzanych produktów naftowych konieczne jest stworzenie kompleksu obejmującego wszystkie etapy produkcji. Najważniejszym kryterium oceny efektywności energetycznej rafinerii ropy naftowej jest względne zużycie energii, które zależy od jej złożoności. Kryterium to można przedstawić jako zestaw różnych rodzajów zasobów energetycznych wykorzystywanych w trakcie produkcji i stosowanych w całej produkcji. W tym celu zasoby energii zainwestowane w daną technologię należy odnieść do gotowego produktu lub surowca. Specyfika rafinerii ropy naftowej polega na tym, że ze względu na różnorodność produktów ropopochodnych energochłonność, jako zespół różnych instalacji, znacznie bardziej adekwatnie odnosi się nie do poszczególnych produktów docelowych, ale do ilości przerobionej ropy. W praktyce wszystkie rodzaje nośników energii muszą być przeliczane na wartości równoważne. Artykuł zawiera dogłębną analizę kosztów energii rafinerii ropy naftowej. Przedmiotem niniejszego opracowania jest zbiór przepływów energii różnych typów i wymiarów. Na tej podstawie przedstawiono metodę pozwalającą porównać efektywność energetyczną rafinerii o różnej wydajności i konfiguracji etapów przerobu ropy naftowej na podstawie wskaźnika energetycznego i ekwiwalentnej wydajności destylacji.
EN
The economical combustion of gas fuel implies that it takes place with a minimum coefficient of excess air and minimal losses. Constructive, aerodynamic and physical factors have a determining influence on the completeness of combustion and the conditions of ignition. Using the ANSYS software program, the main characteristics of the combustion process in the cylindrical mixing section of a flat flame injection burner are investigated through computer simulation. A geometric model was created on which it is possible to study both straight and rotating jets. The possibility of numerically investigating the combustion of gaseous fuel (C3H8) in a confined air flow produced by injection is considered. A k-ε model of turbulence was used, which is based on the equation for turbulent kinetic energy and its dissipation rate. The purpose of the work is to study and analyze the changes and distribution of temperature and speed as well as the concentration of nitrogen oxides and carbon monoxide along the axis of the combustion chamber. The results are presented for the angles of inclination of the nozzles of 45° and 0°. Based on these, an analysis was made, where it was found that with the increase in the degree of rotation, the absolute values of the temperature increase and the change in the mass concentration of the fuel along the length of the mixing section can be used to regulate the combustion process. The created numerical model can be successfully used to determine the main parameters of the burner under the same initial conditions, changing the angle of inclination of the nozzles. The obtained results can be considered as a basis for further research related to increasing the efficiency of the combustion process and lowering the harmful emissions produced by it.
PL
Ekonomiczne spalanie paliwa gazowego oznacza, że odbywa się ono przy minimalnym współczynniku nadmiaru powietrza i minimalnych stratach. Czynniki konstrukcyjne, aerodynamiczne i fizyczne mają decydujący wpływ na kompletność spalania i warunki zapłonu. Za pomocą programu ANSYS, używając symulacji komputerowej, badano główne charakterystyki procesu spalania w cylindrycznej sekcji mieszania palnika wtryskowego z płaskim płomieniem. Powstał model geometryczny, na którym można badać zarówno strumienie proste, jak i wirujące. Rozważa się możliwość numerycznego badania spalania paliwa gazowego (C3H8) w zamkniętym strumieniu powietrza wytworzonym przez wtrysk. Zastosowano model turbulencji k-ε, który opiera się na równaniu energii kinetycznej turbulencji i szybkości jej rozpraszania. Celem pracy jest badanie i analiza zmian i rozkładu temperatury, a także prędkości oraz stężenia tlenków azotu i tlenku węgla wzdłuż osi komory spalania. Wyniki przedstawiono dla kątów nachylenia dysz 45° i 0°. Na ich podstawie przeprowadzono analizę, w której stwierdzono, że wraz ze wzrostem stopnia rotacji można wykorzystać wartości bezwzględne wzrostu temperatury i zmiany stężenia masowego paliwa na długości odcinka mieszania, do regulacji procesu spalania. Stworzony model numeryczny można z powodzeniem wykorzystać do wyznaczenia głównych parametrów palnika w tych samych warunkach początkowych, zmieniając kąt nachylenia dysz. Uzyskane wyniki można traktować jako podstawę do dalszych badań związanych ze zwiększeniem wydajności procesu spalania i obniżeniem wytwarzanych przez niego szkodliwych emisji.
EN
The introduction of increasingly strict rules related to the processing and storage of animal waste, the growing demand for energy and the creation of sustainable animal husbandry have led to an increased interest in the production of clean energy from animal waste. The production of biogas and its subsequent burning on the farm is among the most promising technologies. One of the possibilities for the utilization of biogas is through the use of small aggregates for the combined production of electricity and heat energy based on an internal combustion engine. Analysis of such facilities that have been put into operation show that alternative technologies using biogas as fuel are better than conventional options, both from an economic and an environmental point of view. In this sense, however, the introduction of such a technology into operation is always associated with a number of risks, since investments in new technologies are influenced by technical and economic uncertainty. When planning and preparing the plan for the construction of such a biogas facility, the investment costs, technical support and profitability of the project are essential. Introducing critical economic and technical parameters to inform the farmer of all possible investments, operational and unforeseen risks will allow him to accept the challenges and choose the best solution for his farm. In this publication, an analysis and assessment of the risk has been carried out based on the characteristics of the technology – the possible consequences of the risk are also presented. A risk matrix related to the specifics of the object and the technology is proposed, with the help of which, the type of risk is identified. Based on an analysis of the obtained results, a motivated proposal for reducing the risk is made.
PL
Wprowadzenie coraz ostrzejszych zasad związanych z przetwarzaniem i składowaniem odchodów zwierzęcych, rosnące zapotrzebowanie na energię oraz tworzenie zrównoważonej hodowli zwierząt spowodowały wzrost zainteresowania produkcją czystej energii z odchodów zwierzęcych. Produkcja biogazu i jego późniejsze spalanie w gospodarstwie należy do najbardziej obiecujących technologii. Jedną z możliwości wykorzystania biogazu jest wykorzystanie małych agregatów do skojarzonej produkcji energii elektrycznej i cieplnej w oparciu o silnik spalinowy. Analiza takich obiektów oddanych do użytku pokazuje, że alternatywne technologie wykorzystujące biogaz jako paliwo są lepsze od konwencjonalnych, zarówno z ekonomicznego, jak i środowiskowego punktu widzenia. Jednakże wprowadzenie takich technologii do eksploatacji zawsze wiąże się z szeregiem zagrożeń, ponieważ na inwestycje w nowe technologie wpływa niepewność techniczna i ekonomiczna. Przy planowaniu i przygotowaniu planu budowy takich biogazowni istotne są koszty inwestycji, wsparcie techniczne i opłacalność projektu. Przedstawienie rolnikowi krytycznych parametrów ekonomicznych i technicznych informujących go o wszelkich możliwych zagrożeniach inwestycyjnych, operacyjnych i nieprzewidywalnym ryzyku pozwoli mu podjąć wyzwania i wybrać najlepsze rozwiązanie dla swojego gospodarstwa. W publikacji dokonano analizy i oceny ryzyka w oparciu o charakterystykę technologii oraz przedstawiono możliwe konsekwencje tego ryzyka. Proponowana jest macierz ryzyka związana ze specyfiką obiektu i technologią, za pomocą której identyfikowany jest rodzaj ryzyka. Na podstawie analizy uzyskanych wyników formułowana jest umotywowana propozycja ograniczenia ryzyka.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.