In recent years, several cluster ensemble methods have been developed, but they still have some limitations. They often use different clustering algorithms in both stages of the clustering ensemble method, such as the ensemble generation step and the consensus function, resulting in a compatibility issues. To deal with it, we propose a novel cluster ensemble method based on an identical clustering algorithm (CEI). Experiments on real-world datasets from various sources show that CEI improves accuracy by 5% on average compared to state-of-the-art cluster ensemble methods and by 55.54% compared to AP while consuming 44.60% less execution time.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Fog/Edge computing model allows harnessing of resources in the proximity of the Internet of Things (IoT) devices to support various types of latency-sensitive IoT applications. However, due to the mobility of users and a wide range of IoT applications with different resource requirements, it is a challenging issue to satisfy these applications' requirements. The execution of IoT applications exclusively on one fog/edge server may not be always feasible due to limited resources, while the execution of IoT applications on different servers requires further collaboration and management among servers. Moreover, considering user mobility, some modules of each IoT application may require migration to other servers for execution, leading to service interruption and extra execution costs. In this article, we propose a new weighted cost model for hierarchical fog computing environments, in terms of the response time of IoT applications and energy consumption of IoT devices, to minimize the cost of running IoT applications and potential migrations. Besides, a distributed clustering technique is proposed to enable the collaborative execution of tasks, emitted from application modules, among servers. Also, we propose an application placement technique to minimize the overall cost of executing IoT applications on multiple servers in a distributed manner. Furthermore, a distributed migration management technique is proposed for the potential migration of applications' modules to other remote servers as the users move along their path. Besides, failure recovery methods are embedded in the clustering, application placement, and migration management techniques to recover from unpredicted failures. The performance results demonstrate that our technique significantly improves its counterparts in terms of placement deployment time, average execution cost of tasks, the total number of migrations, the total number of interrupted tasks, and cumulative migration cost.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.