Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote MD Simulations of Ultraprecision Machining of fcc Monocrystals
EN
In technical sciences, the term "machining" refers to the process of forming an object into a desired shape and size, with a desired quality of surface, by removing layers of its material by means of a cutting tool. The paper describes research on ultra-precision machining (UPM), where the abovementioned process takes place on the atomic level and involves systems (a machined object and a tool) several dozen nanometers in size. Three-dimensional computer simulations (virtual experiments) of UPM of monocrystalline copper with an infinitely hard tool were performed utilizing the classical molecular dynamics (MD) method with a many-body potential to describe the interatomic interactions. Among the examined issues were: the effect of the tool shape, machining speed and depth on the obtained workmaterial surfaces, and on the stresses, slip patterns and local temperature increases generated during the process.
EN
In computer simulations of the structure of matter, one usually obtains the Cartesian coordinates of all the particles involved. A non-trivial problem of structure recognition and characterization arises. In the present contribution, we study in detail the geometrical properties of a fuzzy-vertex CA3 structural unit (C - cation, A - anion). Two deformation degree estimators are introduced and examined. The Monte Carlo-generated stochastic characteristics of fuzzy CA3 triangles constitute conventional reference data that can be compared with the corresponding distributions calculated for a computer-simulated material. A quantitative estimation of the deformation degree of CA3 units in the simulated structure can thus be obtained. We apply the methods developed to quantitatively characterize the geometry of BO3 structural units in B2O3 glass.
3
Content available remote The structure of rarefied and densified PbSiO3 glass: a molecular dynamics study
EN
The paper is a molecular dynamics (MD) study of the structure of rarefied and densified lead-silicate glass of the PbSiO3 composition. Simulations have been performed in the constant volume regime for systems with densities of 3000, 4000, 5000, 5970 (normal density), 7000 and 8000kg/m3, using a two-body potential (Born-Mayer repulsive forces and Coulomb forces due to full ionic charges). All the systems were initially prepared as well equilibrated hot melts, and then slowly cooled down to 300K. The information on short-range correlations was obtained in a conventional way (from radial and angular distribution functions), while the middle-range order was studied via cation-anion ring analysis, using our new programme for basal ring determination. The structure of rarefied and densified glasses is compared with the structure of the same glasses under normal conditions. Moreover, the present results on PbSiO3 glass are compared with the corresponding data previously obtained for rarefied and densified PbGeO3 glass (Rybicki et al. 2001 Comput. Met. Sci. Technol. 7 91-112).
EN
In the paper we propose and test a "gel-drying" method of obtaining porous oxide glasses in Molecular Dynamics (MD) simulations. The simulation is started with low (screened) values of ionic charges. Then, the charges are gradually increased (to mimic the gradual elimination of a polar solvent) up to full ionic charges (a completely dry gel). This computational trick is applied to produce a porous PbSiO3 system. The structure of the resulting low-density samples is analysed in detail. Then, the porous structures are submitted to spontaneous densification, and the structure of the obtained dense bulk glasses is analysed. Finally, the structures of bulk glass obtained via spontaneous densification (density p - 8250 kg/m3) and bulk glass of the same density obtained via isotropic compression are compared.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.