Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the International Maritime Organization (IMO) to reduce by half the amount of greenhouse gases emitted by marine ships by 2050, and its vision of the fastest total decarbonisation in the maritime shipping industry within the present century, calls for implementation with various means of decarbonisation. The IMO approaches the process of decarbonisation in two phases. Firstly, short-term, compact projects are to be considered, next, more complex, medium- and long-term solutions should be aimed at. The preferred arrangements to be applied are photovoltaic systems. Their performance depends to a high degree on the solar incidence angle. In the case of a ship swinging as a result of its course in relation to the wave and incidence direction, the incidence angle undergoes significant periodic changes with a significant effect on the power generated by the PV panels. As a result, the total amount of energy produced by the PV panels diminishes. The paper presents experimental research results obtained on the stand that allowed the investigation of PV panels in simulated marine conditions. Two characteristic positions of a PV panel’s rotation axis in relation to the solar rays’ incidence direction were investigated. It was proved for both variants that the rolling period and solar incidence angle affected the power generated by the PV panel.
EN
Application of retractable enclosures enables to lengthen operation periods for outdoor swimming pools operated in the moderate climate zone. Enclosures allow to diminish energy losses from water in the pool to the environment. Thermal calculations for pools with retractable enclosures are difficult to carry out because of a number of required parameters which can only be estimated. One of them is the transmission of solar radiation through the enclosure. The present paper presents the method of estimation of this parameter for swimming pool enclosures made of polycarbonate panels that have multichannels structure. In order to calculate transmission, the methodology considering the multiples of solar reflection inside the enclosure and their absorption by polycarbonate has been elaborated. Calculation results for transmission of the enclosure were verified experimentally. Analysis of results show that the transmission depends strongly on the enclosure’s construction and on the direction of solar radiation on the enclosure. Mean transmission values of enclosure under research were determined both from calculations and experiment are equal to about 0.69 and 0.64, respectively. However, experimentally determined mean values of total transmission by parallel and perpendicular solar directions in relation to channel axes are equal to about 0.69 and 0.60, respectively.
PL
Zmiany klimatu i związana z tym konieczność ograniczenia produkcji energii elektrycznej z dotychczasowych jej źródeł wykorzystujących spalanie paliw konwencjonalnych, a także rosnące ceny energii elektrycznej to czynniki, które spowodowały nagłe i gwałtowne zainteresowanie instalacjami fotowoltaicznymi. Potencjalni inwestorzy poszukają rzetelnych i wiarygodnych informacji dotyczących eksploatacji i wydajności energetycznych takich instalacji. W niniejszej pracy zostanie porównanych kilka instalacji PV zlokalizowanych w województwie zachodniopomorskim. Instalacje te różnią się istotnie czasem oddania do eksploatacji, wielkością i mocą zainstalowaną. Najmniejsza instalacja PV to najdłużej eksploatowana (ponad 20 lat) małogabarytowa instalacja PV o mocy nominalnej 1,1kWp znajdująca się na dachu budynku KTE ZUT w Szczecinie. Dwie instalacje PV posiadające moce nominalne około 215kWp i 950kWp są eksploatowane przez firmę „SELFA” w Szczecinie i Starym Czarnowie. Trzy kolejne farmy fotowoltaiczne PV eksploatuje ZWiK w Szczecinie. Dwie z nich to farmy fotowoltaiczne o mocach nominalnych około 0,5MWp i 1,45MWp znajdujące się nad jeziorem Miedwie i jedna o mocy około 525 kWp w Szczecinie-Pilchowie.
EN
Climate changes and the related necessity to limit the production of electricity from its current sources using conventional fuels combustion, as well as rising electricity prices are factors that caused a sudden and violent interest in PV installations. Potential investors look for reliable and credible information on the operation and energy efficiency of such installations. In this study, 6 PV installations located in the West Pomeranian Voivodeship will be compared. These installations differ significantly in terms of commissioning time, size and installed power. The smallest PV installation is the longest operated (over 20 years) small-sized PV installation with a nominal power of 1.1kWp located on the roof of the KTE ZUT building in Szczecin. Two PV installations with nominal capacities of around 214.5kWp and 950kWp are operated by the "Selfa" company in Szczecin and Stare Czarnowo. Three more PV farms are operated by ZWiK in Szczecin. Two of them are photovoltaic farms with nominal capacities of about 0.5MWp and 1.45MWp located at Lake Miedwie and one with a capacity of about 0.5MWp in Szczecin-Pilchowo.
PL
W niniejszej pracy przedstawiono analizę parametrów pracy instalacji PV znajdującej się na dachu budynku Katedry Techniki Cieplnej (KTC) Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie. Instalacja ta została oddana do użytku w lutym 1999 roku i jest jedną z najstarszych instalacji PV w Polsce, której parametry są systematycznie monitorowane i publikowane. Instalacja PV składa się z 10 modułów monokrystalicznych typu M110 firmy Siemens. Moduły te połączono w sposób szeregowo-równoległy tworząc panel PV o mocy 1100Wp. Wytworzona energia elektryczna przekazywana jest poprzez falownik do instalacji elektrycznej budynku Katedry Techniki Cieplnej. W trakcie dwudziestoletniej eksploatacji instalacji PV łączna ilość wytworzonej energii elektrycznej wynosiła około 19,5 MWh.
EN
The paper presents analysis of working parameters for PV installation located on the building roof of Department of Heat Engineering of West Pomeranian University of Technology, Szczecin. This installation is commissioned at February 1999. Installation is one of the oldest in Poland. Parameters of its operation are systematically monitoring and publishing. PV installation consist of 10 monocrystalline modules type M110 manufactured by Simens. Modules are connected in serial-parallel way and create panel PV that has power 1100Wp. Produced by modules electricity is transferred through inverter to electrical grid of building of Department of Heat Engineering. Electricity production by PV installation during twenty years is about 19,5 MWh.
EN
Effective use of energy in various branches of economy is one of world trends in development of power engineering. Relevant energy consumption occurs during exploitation of buildings, so there is still potential to diminish it as far as heating, ventilation, and air conditioning are concerned. Particularly in summer season, the choice of respective roofing colour can play a decisive role for the heat flux transferred to the inside of the object. Decrease of heat flux causes a lower heat burden to the building and lower power consumption by the air conditioning systems. In winter, on the contrary, heat flux transferred to building’s interior should be higher, as a result, demand of energy for heating will be lower. However, calculations of the heat flux require that energy balance must be made for the object. Unfortunately, not all producers of roofing covers inform about the values of reflectivity and thermal emissivity of their products, which is, in turn, necessary for calculations. In the present paper, research methodology elaborated by authors is proposed for determination of thermal emissivity of roofing covers. The paper presents test stand, methodology, and research results for roofing paper in blue colour (as an example) for which the thermal emissivity is an unknown parameter.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.