Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Sabalan Mountain (northwest Iran) witnessed intense volcanic activity during the Cenozoic (Plio-Pleistocene). The result of this manifests itself in the conical geometry of the Sabalan stratovolcano and ahigh hydrothermal gradient around it, which can be detected by geological phenomena such as hot springs, smoke gases and steam outlet pores. The high hydrothermal slope and upward migration of hot water in this area have caused extensive alteration zones in the host rocks. A mineralogical study of alteration zones in thewells drilled in the Moyil Valley to the northwest of Sabalan Mountain has revealed the presence of phyllic, argillic, calcitic and propylitic alterations in volcanic rocks (trachyandesite) and alteration phyllic and propylitic ones in monzonite rocks. In chondrite-normalised rare-earth-element diagrams, trachyandesite rocks exhibit an HREEs enrichment when compared to MREEs and LREEs in propylitic and calcitic alteration zones. This result can be explained by the acidic nature of hydrothermal fluids containing complex ions such as (SO-2, Cl-). The (La/Yb)cn, (La/Sm)cn and (Tb/Yb)cn ratios for argillic, phyllic, propylitic and calcitic alteration zones have revealed that they are higher in fresh rocks compared to altered rocks, suggesting the enrichment of HREEs in comparison to LREEs and MREEs. The anomalies of Eu do not change remarkably in the argillic and propylitic alteration zones of trachyandesite rocks; apparently, alteration hadno effect on them. Such behaviour reflects the presence of gold cations in Eu+3 formed at temperatures below 250°C. Eu anomalies increased in propylitic alteration zones in monzonite rocks and calciticand phyllic alteration zones in trachyandesiterocks.
EN
The Arasbaran metallogenic zone in northern Iran is part of the Alborz-Azerbaijan magmatic zone, which developed along the southern margin of Eurasia during the Early Mesozoic-Late Cenozoic. This region hosts precious and base metal mineralization, including porphyry, skarn, and epithermal copper, molybdenum, and gold deposits. Rare earth element variations across all the deposits are similar, indicating a similar source for these elements. The north-west trending belt comprising the Nabijan to the Sonajil deposits consistently shows chiefly alkaline conditions of formation. Fluid inclusion studies indicate that both high and low temperature hydrothermal fluids participated in the formation of all of the deposits. The mineralization age decreases from north to south and east to west and, although metal zonation is complex, the Cu-Au association post-dated the Cu-Mo mineralization reflecting that the ore fluid evolved in terms of both cooling and chemical changes due to fluid-fluid and fluid-rock interactions. In this region most deposits record a concentric zonation, with the centres preserving porphyry and skarn deposits and deposits becoming progressively epithermal toward the outer parts of the mineralizing system. According to this, the mineralization age decreases from the porphyry and skarn deposits to the epithermal deposits. The homogenization temperature and salinity both decrease from the centre to the outer zone. The pattern of homogenization temperature zonation, which is concordant with salinity zonation, suggests that fluids migrated up-dip and towards the margins of the zonation system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.