Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper aims to provide a comprehensive review on the physico-chemical factors governing the flotation of Cu-Mo-Fe sulfide ores in seawater, which is different from NaCl or KCl solutions because it contains hydrolysable ions such as Mg2+, Ca2+, HCO3-, CO32-, etc., which can precipitate with lime as hydroxides, Ca, and Mg insoluble salts. Under pH 9.0 Mg2+ ions do not depress molybdenite. However, over the critical pH of precipitation of Mg(OH)2 (pH>10.0), molybdenite is strongly depressed in seawater. This detrimental effect on molybdenite discards the use of lime to depress pyrite in Cu-Mo-Fe ores floated in seawater. In plant practice, the use of sodium metabisulfite (MBS) has replaced lime as a pyrite depressant. It works at pH 6.5-7.0 where the natural floatability of molybdenite is enhanced. Consequently, pH control in rougher and cleaning circuits, and the use of MBS to depress pyrite, have allowed the successful use of non-desalinated seawater in flotation of Cu-Mo-Fe sulfide ores at industrial scale.
EN
A number of flotation plants around the world have increased the use of seawater due to limited sources of fresh water. The aim of this research work is to study the role that Mg2+ and Ca2+ ions play in the interactions between kaolinite and chalcopyrite in seawater. In order to achieve this objective, the effect of kaolinite on flotation of chalcopyrite is studied over the pH range from 8 to 11, when flotation is carried out in seawater and in a 0.01M NaCl solution. The influence of calcium, magnesium, sodium, and potassium ions on the extent of depression by kaolinite is evaluated. The micro-flotation results indicate that chalcopyrite is depressed by kaolinite in both 0.01 NaCl solution and seawater. In the 0.01 NaCl solution, the depressing effect of kaolinite decreases as the pH increases from 8 to 11. However, the results obtained using seawater show that the depressing effect of kaolinite is similar to what is observed in a 0.01 NaCl solution only at pH values below 9, but above this pH kaolinite significantly affects the recovery of chalcopyrite. The results from experiments with using solutions containing individual cations show that the depressing action of kaolinite in the presence of Mg2+ and Ca2+ is more obvious at pH values of 9 and 10, respectively, which correlates with the pH values at which the first hydroxy-complexes of these divalent cations start forming. This seems to indicate that depressing effect of kaolinite on chalcopyrite in seawater may be related to formation of hydrolyzed species of calcium and magnesium. These species can induce heterocoagulation between kaolinite and chalcopyrite. The trends observed in the micro-flotation experiments are in good agreement with the results of the induction time measurements and slime coating tests.
EN
The main problem in the flotation of Cu-Mo sulfide ores in seawater is poor floatability of molybdenite at pH>9.5. Froth stability plays a very important role in determining concentrate grade and recovery in flotation operations and in this paper both floatability and frothability have been tested. The frothability have been studied by measuring froth equilibrium layer thickness in a modified laboratory flotation cell. Two chemical aspects of seawater need to be considered: the content of NaCl (around 87% of salinity), and the concentration of secondary ions (around 13%) (sulfate, magnesium, calcium, bicarbonate ions, etc.). Seawater, NaCl solutions, and seawater’s ions were found to depress frothability. The effect of pH on frothability over the pH range from 9.5 to 11, which is very strong in freshwater, becomes negligible in seawater and the tested electrolyte solutions. The analysis of the relationship between the mechanisms of molybdenite depression and the loss of frothability in seawater implies that the effects of the studied ions on molybdenite floatability and on pulp frothability are different. While depression of molybdenite floatability could be tracked down to magnesium hydroxide precipitation as a main culprit, the depression of frothability is a much more complicated issue.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.