Przemysł lotniczy wymaga wysokiej jakości i dokładności wykonania wytwarzanych elementów, stąd konieczne jest zapewnienie jak najlepszej kontroli jakości. Proces inspekcji wykonanego detalu powinien przebiegać w taki sposób, aby wpływ na mierzony element był jak najmniejszy. Idealnym rozwiązaniem mogą być badania z użyciem skanerów optycznych. Jednak ze względu na długi czas pojedynczego pomiaru oraz konieczność nakładania powłoki anty refleksyjnej taki proces nie sprawdza się w produkcji. W pracy zaprezentowano koncepcję zrobotyzowanego stanowiska do pomiaru, orientacji i geometrii łopatki turbiny silnika lotniczego. Stacja składa się z robota przemysłowego wyposażonego w chwytak oraz stanowiska pomiarowego zaopatrzonego w laserowe czujniki odległości. Zmierzone wielkości zostają przesłane z modułu pomiarowego do kontrolera robota za pomocą protokołu transmisji danych. Przesłane dane mogą zostać wyświetlone na panelu operatorskim lub wykorzystane do przygotowania raportu. W porównaniu z pomiarem z wykorzystaniem skanera optycznego cały proces zajmuje znacznie mniej czasu. Na podstawie przygotowanych modeli CAD oraz wykorzystując notację Denavita-Hartenberga, wyznaczone zostały pozycja i orientacja łopatki w odniesieniu do układów współrzędnych robota oraz stanowiska pomiarowego.
EN
The aerospace industry requires high quality and precision of the manufactured parts thus it is necessary to ensure the best possible quality control. The inspection process of the workpiece should be done in such a way that the impact on the measured element is as small as possible. The ideal solution can be research using optical scanners. However, due to the long-time of a single measurement and the need to apply an anti-reflective coating, such process does not work in production. The paper presents the concept of a robotic station for measuring, orientation and geometry of an aircraft engine turbine blade. The station consists of an industrial robot equipped with a gripper and a measuring station equipped with laser sensors of distance. The measured quantities are transferred from the measurement module to the robot controller by means of a data transmission protocol. The transferred data can be displayed on the operator panel or used to prepare a report from a measurement. In comparison with the optical scanner, the entire process takes much less time. Based on the prepared CAD models and using the Denavit-Hartenberg notation, the positions and orientation of the blade were determined in relation to the robot coordinate systems and the measurement position.
Robotyzacja procesów laserowych oraz zwiększenie spektrum zastosowań systemów zrobotyzowanych to obecnie bardzo mocno rozwijane zagadnienia. W artykule zaprezentowano symulację i weryfikację procesu znakowania laserowego stupa elektrycznego. Zdefiniowane wymagania procesu; oraz elementy stanowiska byty Informacjami wejściowymi do wykonania: symulacji laserowego znakowania produktu w środowisku programowym FANUC Roboguide. Otrzymane rozwiązanie zweryfikowano w kilku testach na stanowisku wyposażonym w robota FANUC M-70iC/70, głowicę laserową LaserMech FiberCut RA oraz źródło lasera IPG YLS-4000-2ST. Otrzymane wyniki symulacji potwierdziły poprawność zaprezentowanego rozwiązania.
EN
Nowadays robotization of laser processes and expansion of usage of robotized laser systems are highly developed issues. In the article a simulation and verification of a process of lamp post laser marking were presented. Defined requirements of a process and station's elements were input Information for preparing lamp post laser marking simulation In FANU Roboguide software. Obtained results were verified during several test on real station equipped with FANUC M-70IC/70 robot, LaserMech FiberCutR laser head and iPG YLS-4000-2ST laser source. Obtained results confirmed presented solution.
W pracy przedstawiono koncepcję zastosowania optycznego skanera 3D do wyznaczania TCP manipulatora przemysłowego. Manipulator podczas obróbki może używać różnego rodzaju narzędzi (np. wrzecion elektrycznych, pneumatycznych), dla których niezbędne jest wyznaczenie TCP. Wrzeciona w trakcie obróbki danej powierzchni bądź krawędzi mogą być zmieniane. Każda zmiana wrzeciona związana jest z pewną niedokładnością. Kolejne niedokładności generowane są przez wymianę narzędzi obróbczych (frezy, tarcze ścierne). Niedokładności te powodują zmianę punktu centralnego narzędzia (ang. Tool Cetre Point w skr. TCP) manipulatora, którą należy korygować.
EN
The paper presents the concept of using an optical 3D scanner to determine a TCP of industrial robot. While performing the machining the robot can use various types of tools (eg electric or pneumatic spindles) and various machining tools for which determination of TCP is necessary. Also, spindles can be changed during the machining of a surface or an edge. Each change of spindle is associated with some inaccuracy from the changer system. Further inaccuracies are generated by the machining tools (cutters, grinding wheels). These inaccuracies cause a change of robot’s TCP that should be corrected.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.