Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
We investigated the performance of designed single coil and multi-coil actuators for the Active Magnetic Bearing (AMB) system. The attractive force differs depending on the structure and actuator design. The behavior and characteristics of particular actuators differ too. Ansys Maxwell was used to perform magnetic analyses of flux, flux density, field strength, force profile and inductance profile in 2D, and magnetic flux density, field strength, current density and inductance profile in 3D. These analyses were performed for the 10 mm air gap between the actuator and rotor for single, two, three and four coils and all the parameters were compared. The quantities were compared to provide insight into the behavior of single and multi-coil actuators.
EN
Permanent magnet brushless DC motors (PMBLDC) find broad applications in industries due to their huge power density, efficiency, low maintenance, low cost, quiet operation, compact form and ease of control. The motor needs suitable speed controllers to conduct the required level of interpretation. As with PI controller, PID controller, fuzzy logic, genetic algorithms, neural networks, PWM control, and sensorless control, there are several methods for managing the BLDC motor. Generally, speed control is provided by a proportional-integral (PI) controller if permanent magnet motors are involved. Although standard PI controllers are extensively used in industry owing totheir simple control structure and execution, these controller shave a few control complexities such as nonlinearity, load disruption, and parametric variations. Besides, PI controllers need more precise linear mathematical models. This statement reflects the use of Classic Controller and Genetic Algorithm Based PI, PID Controller with the BLDC motor drive. The technique is used to regulate velocity, direct the BLDC motor drive system’s improved dynamic behavior, resolve the immune load problem and handle changes in parameters. Classical control & GA-based control provides qualitative velocity reaction enhancement. This article focuses on exploring and estimating the efficiency of a continuous brushless DC motor (PMBLDC) drive, regulated as a current controller by various combinations of Classical Controllers such as PI, GA-based PI, PID Controller. The controllers are simulated using MATLAB software for the BLDC motor drive.
EN
Active Magnetic Bearing is the advancement of habitual technology and is used to increase the rotational speed. AMB isusing power electronics drives, which is the key features of this technology. In this paper, a simple and cheap converter with reduced switch is simulated and implemented in hardware for the validation of simulation result is presented. The principle of the active magnetic bearing and power amplifier is introducedand the generation of pulse is also described. Then, result of simulation and hardware output is compared. Based on the output of hardware setup simulation result is validated. With the help of this amplifier cheapest and better control for active magnetic bearing can be achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.