Celem pracy było scharakteryzowanie przestrzeni porowej łupków menilitowych występujących w odsłonięciach powierzchniowych z rejonu Birczy w jednostce skolskiej. Wszystkie próbki zostały pobrane z całego profilu stratygraficznego w jednym odsłonięciu w Birczy o długości 1 m. Struktura porowa próbek łupków wygrzanych w 105°C była mierzona metodą porozymetrii rtęciowej (ang. mercury injection capillary pressure, MICP) w temperaturze otoczenia oraz metodą adsorpcji azotu w temperaturze wrzenia ciekłego azotu. Ze względu na deformację przestrzeni porowej pod wpływem wysokich ciśnień roboczych rtęci, z krokami ciśnienia od 0 do 4136,84 bara, mikropory i mezopory można błędnie interpretować. Jako metodę uzupełniającą zastosowano więc pomiar adsorpcji azotu w celu prawidłowego obliczenia całkowitej połączonej objętości porowej. Na wykresach dV/dD (pochodnych objętości względem średnicy) połączono wyniki z obu technik pomiarowych, uzyskując pełniejszy obraz rozkładu objętości porów. W pracy przedstawiono możliwość dokładniejszego obliczenia objętości porów na podstawie nowego podejścia do analizy wykresów pochodnych. Obie metody zapewniają również kompleksową ocenę parametrów struktury porów, w tym powierzchni właściwej (ang. specific surface area, SSA), objętości mikroi mezoporów oraz rozszerzonego zakresu rozkładu wielkości porów (ang. pore size distribution, PSD). Porównując wyniki metody adsorpcyjnej z użyciem azotu z wynikami porozymetrii rtęciowej, należy pamiętać o różnicach w zakresach obu technik badawczych oraz o tym, że azot i rtęć rejestrują struktury porowe w znacząco odmienny sposób. Zatłaczanie rtęci do struktury porowej jest regulowane przez przewężenia porów, podczas gdy zjawisko adsorpcji jest kontrolowane przez powierzchnię porów. Zastosowanie porozymetrii rtęciowej i adsorpcji azotu do łupków menilitowych pokazuje, jak użycie tych dwóch metod może wpłynąć na uzyskanie wzajemnie uzupełniających się informacji, które weryfikują obliczenia objętości porowej głównej skały macierzystej dla karpackich rop naftowych.
EN
The aim of this paper is to characterize pore space of superficial Menilite Shales from Bircza area within the Skole Unit. All specimens were sampled from single outcrop in Bircza at the distance of 1 m in the whole stratigraphic profile. Pore structure of shale samples preheated at temperature of 105°C was measured by both mercury injection capillary pressure (MICP) at ambient temperature and nitrogen adsorption at liquid nitrogen boiling point. Considering deformation of pore space under high mercury working pressures with pressure steps from 0 to 4136.84 bar, misinterpretation of micropores and mesopores is possible. Therefore, the nitrogen adsorption was used as a supplementary method in order to properly compute the total pore volume. In the dV/dD graphs (diameter derivative of a volume) the results from both measuring techniques were combined, thus obtaining more complete picture of pore volume distribution. The paper presents potential for more precise pore volume computation based on the analyses of their derivative graphs. Both methods provide also complex assessment of pore structure parameters, including specific surface area (SSA), volumes of micro- and mesopores and the extended range of pore size distribution (PSD). When comparing the results of the nitrogen adsorption method with those of the mercury injection method, it is necessary to keep in mind that there are different operating ranges of both methods as the nitrogen and mercury report the pore structures in a very different ways. Forced penetration of mercury into the pore structure is controlled by pore bottlenecks, while the process of adsorption is controlled by the pore surface area. The application of both mercury injection and nitrogen adsorption for Menilite Shales shows how the use of these two methods can provide complementary information that verifies pore volume calculations of the Carpathian petroleum main source rock.
W artykule przedstawiono nowe podejście do interpretacji charakterystyki przestrzeni porowej, polegające na połączeniu pochodnych różnic objętości porowych – wyników porozymetrii rtęciowej i adsorpcji azotu na wspólnej skali, bez stosowania jakichkolwiek sztucznych przesunięć danych. To nowe podejście zastosowano wykorzystując wyniki pomiarów próbek łupków menilitowych pobranych z powierzchni terenu. Jest ono oparte na przyjętym założeniu, że w zakresie dowolnie wybranych średnic porowych istniejąca objętość porowa jest niezależna od użytego typu cieczy niezwilżającej (rtęć, ciekły azot, ciekły argon itp.). Jakiekolwiek różnice pomiarowe wynikające z tych dwóch pomiarów są konsekwencją mechanicznego pękania ścianek porów pod wpływem wysokich ciśnień rtęci lub też ich odkształceń elastycznych i\lub plastycznych oraz innych interakcji pomiędzy materiałem ścianek porów a zastosowaną cieczą niezwilżającą. Znaczące populacje porów w łupkach są zbyt małe, aby mierzyć je tylko za pomocą MICP (ang. Mercury Injection Capillary Pressure), co wyjaśniałoby niedoszacowanie całkowitej połączonej objętości porowej. Dlatego też do jej określenia zastosowano uzupełniającą metodę adsorpcji azotu. Struktura porowa próbek łupków menilitowych wygrzanych w 105°C była mierzona metodą porozymetrii rtęciowej w temperaturze otoczenia oraz metodą adsorpcji azotu w temperaturze wrzenia ciekłego azotu −195,8°C. Rozkłady pochodnych objętości względem średnicy porów otrzymanych z tych dwóch uzupełniających się metod zostały przedstawione w postaci wykresów zależności dV/dD. Na podstawie badań porozymetrycznych i piknometrii helowej obliczono porowatość całkowitą i otwartą, co pozwoliło na scharakteryzowanie własności filtracyjnych próbek skał. Na podstawie badań adsorpcyjnych obliczono powierzchnię właściwą BET, rozkład wielkości porów i zajmowaną przez nie objętość.
EN
In this paper, a new approach has been shown for the interpretation of the pore space characteristics, consisting in combining pore space volumetric fractional derivatives of mercury intrusion and nitrogen adsorption on the same scale without using any artificial data transformation. This new approach was shown using obtained results of measurements of surface Menilite Shales. It is based on the assumption that for any selected pore diameters, the existing pore space volume is independent of the applied non-wetting liquid agent (mercury, liquid nitrogen, liquid argon etc.). Any recorded differences of these two methods are due to cracking of pore walls under high mercury pressure or their elastic and/or plastic deformations and other interactions between pore building material and the non-wetting liquid used. Significant populations of pores in shales are too small to be measured using only MICP (Mercury Injection Capillary Pressure), which would explain the underestimation of the total porous space. Therefore, for its proper estimation, the complementary method of nitrogen adsorption has been used. The porous structure of Menilite Shale samples preheated at 105°C was measured using the mercury intrusion method MICP at ambient temperature and using nitrogen adsorption at its boiling point temperature of −195.8°C. Volumetric fractional derivatives of pore diameters obtained by these 2 different complementary methods were shown in the form of graphs dV/dD. Based on the porosimetric and helium pycnometric tests both bulk and open porosity was calculated, which allowed to characterise the filtration properties of rock samples. Based on the adsorption testing, the specific surface BET was calculated, as well as the pore size distribution and its total porous volume.
Celem pracy jest przedstawienie efektów wygrzewania próbek skał ilasto-mułowcowych na ich strukturę porową, a konkretnie powierzchnię właściwą BET. Struktura porowa surowych i częściowo wygrzanych próbek była mierzona metodą adsorpcji azotu w niskiej temperaturze, w tym przypadku w temperaturze wrzenia ciekłego azotu. Otrzymane izotermy adsorpcji i desorpcji tych próbek były podobne i można je było zaklasyfikować jako typ II, według klasyfikacji IUPAC (Sing et al., 1985). Badania adsorpcyjne wykonano na próbkach skał ilastomułowcowych z utworów ordowiku i syluru oraz fliszu karpackiego. Selekcję próbek przeprowadzono na podstawie analizy składu mineralogicznego, opierając się na ilościowej analizie rentgenowskiej (tabela 3). Głównym kryterium wyboru była zawartość węglanu wapnia, ze względu na to, iż przyjmuje się, że węglany nie ulegają żadnym przemianom poniżej 550°C. Okazało się jednak, że przemiany następują już w znacznie niższych temperaturach. Dla każdej próbki wykonano co najmniej 30 pomiarów adsorpcyjnych, w sumie wykonując ich około 120 pomiarów. Otrzymano krzywe kumulacyjne oraz funkcje rozkładu objętości porów wyznaczone za pomocą algorytmu BJH (ang. Barrett-Joyner-Halenda) (Barrett et al., 1951), z gałęzi desorpcji przy użyciu równania statystycznej grubości warstwy Halseya i korekcji Faass (Faass, 1981) oraz wartości powierzchni właściwej BET (Brunauer et al., 1938). Analizując otrzymane wyniki można stwierdzić, że wszystkie próbki przed przystąpieniem do badania – w celu minimalizacji błędów pomiarowych związanych z heterogenicznością – należy przesiać przez sito 0,5 mm. Następnie po wygrzaniu i przedmuchaniu próbki w urządzeniu SmartPrep należy zatkać probówkę korkiem w celu eliminacji ponownego zawilgocenia. Konsekwencją wygrzewania próbki już nawet w temperaturze 65°C jest wzrost wartości Ro o 3%, lecz przy wygrzewaniu w 425°C rośnie ona aż o 500%. Po wykonaniu analizy adsorpcji azotem zauważono, że wszystkie próbki, niezależnie od ich współczynnika wzrostu lub spadku powierzchni właściwej BET z temperaturą, wykazują tendencję do lokalnych minimów w zakresie 130–190°C i 360–425°C oraz lokalnych maksimów 65–105°C i 250–320°C, których to wyjaśnienie powinno być przedmiotem osobnej pracy analizującej szczegółowo zjawiska fizycznochemiczne występujące w podobnym trendzie we wszystkich analizowanych próbkach.
EN
The purpose of this work was to show the effects of heating up of mudstones rock samples, on their pore structure and especially on their specific surface BET. Porous structures of both – raw and partly heated samples – were measured using nitrogen adsorption method at low temperature i.e. boiling temperature of liquid nitrogen. Adsorption and desorption isotherms obtained for these samples were similar and they could be classified as type II according to IUPAC classification (Sing et al. 1985). Adsorption testing was conducted on clay-mudstone rock samples from Ordovician, Silurian and Carpathian Flysch layers. Sample selection was based on mineral content analysis outcome from quantitative X-ray analysis. The main selection criteria was calcium carbonate content, due to the fact that theoretically they do not undergo any transformations below 550°C, it turned out, however, that they might occur at much lower temperatures. At least 30 adsorption measurements were taken for each sample, totaling about 120 adsorption measurements. Cumulative curves were obtained together with pore volume distribution functions using BJH (BarrettJoyner-Halenda) (Barrett et al., 1951) algorithm from the desorption branch using Halsey’s statistical layer thickness equation and Faass (Faass, 1981) correction and also specific surface measurements (BET). Analysis of the obtained results allow us to conclude, that all samples should be put through the 0.5 mm sieve before analysis to minimize the error associated with its heterogenity. Later, after the sample has been preheated and Nitrogen vented in SmartPrep apparatus, it has to be cork sealed to eliminate secondary moisture adsorption. The consequence of preheating of a rock sample even at 65°C is the increase in its Vitrinite Reflectance by 3%, but after preheating it at 425°C, VR increases even by 500%. After adsorption analysis it was concluded that all the samples – regardless of whether their BET, change with temperature was positive or negative – showed local minima in 130–190°C and 360–425°C, and local maxima in 65–105°C and 250–320°C which phenomena should be examined in detail in further research, in order to analyse both physical and chemical processes present in similar trend in all analyzed samples.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.