Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effect of possible modification and refining effect of Al-Cu-P-based pre-alloy combined with Fe on the microstructure and the silicon morphology change in hypereutectic Al-Si cast alloy was studied. The samples in the as-cast state were observed by optical and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The 3D morphology of both primary and eutectic silicon was observed by using colour and deep etching in detail. The results showed that the AlCu19P1.4 pre-alloy (1.07 wt.%) combined with the addition of Fe (0.02 wt.%) has a significant effect on the change of the amount, size and morphology of primary Si. This is significantly refined and changes the shape from a coarse irregular star-shaped, polyhedral, or plate-like shape to a fine polyhedral shape. The average size of the primary Si is reduced by about of 78 % from 135 μm to 28 μm and the number of primary Si particles increased from 7.4 to 237. No change in the morphology of the eutectic Si was observed; a refinement of the structure from a coarse needle/plate-like to a fine plate-like structure was seen. The depth etching method using HCl was very effective in the study of the 3D silicon morphology observed, which could be observed in detail without the presence of artefacts.
EN
Self-hardening aluminium alloys represent a new and interesting group of aluminium alloys. They have the advantage that they do not need to be heat treated, which is an important advantage that contributes to a significant reduction in production costs of some components and in the amount of energy used. The present paper deals with the possibility to replace the most used heat treatable AlSi7Mg0.3 cast alloys with a self-hardened AlZn10Si8Mg cast alloy. In this study, microstructural characterization of tensile and fatigue-tested samples has been performed to reveal if this replacement is possible. The results of fatigue tests show that AlSi7Mg0.3 alloy after T6 heat treatment and self-hardened AlZn10Si8Mg has comparable values of fatigue properties. The self-hardening alloy has slightly lower strength, ductility, and hardness.
EN
Due to the high demand for secondary alloys in the automotive and aerospace industry, this work investigates the effect of higher iron content on the quality of AlSi7Mg0.6 sand castings. Secondary-recycled Al-Si alloys contain an increased amount of impurities due to their remelting of scrap metal. One of the most unwanted impurities found in these alloys is iron. Iron leads to the formation of various Fe-rich intermetallic phases, whose morphology influences the mechanical properties even at low Fe content. It also promotes the formation of casting defects, such as porosity and shrinkage. The formation of porosity in secondary Al-alloys is another major aspect that can affect the final properties of castings. Since these materials are mainly used to produce castings for the automotive industry, such as engine blocks, cylinder heads, and so on, it is necessary to produce castings without any defects. Therefore, the quality of AlSi7Mg0.6 sand casting is investigated at lower iron content (0.128% wt. Fe) and compared to the higher iron content (0.429% wt. Fe), whereby a correlation between iron content and porosity is monitored.
EN
This paperwork is focused on the quality of AlSi6Cu4 casting with different wall thicknesses cast into the metal mold. Investigated are structural changes (the morphology, size, and distribution of structural components). The quantitative analysis is used to numerically evaluate the size and area fraction of structural parameters (α-phase, eutectic Si, intermetallic phases) between delivered experimental material and cast with different wall thicknesses. Additionally, the Brinell hardness is performed to obtain the mechanical property benefits of the thin-walled alloys. This research leads to the conclusion, that the AlSi6Cu4 alloy from metal mold has finer structural components, especially in small wall thicknesses, and thus has better mechanical properties (Brinell hardness). These secondary Al-castings have a high potential for use in the automotive industry, due to the thin thicknesses and thus lightweight of the construction.
EN
The use of cast aluminium has still increased, so have the mechanical property requirements. By casting and also in other metallurgical processes, the inclusions enter to the molten aluminium alloy and it exhibits poor ductility or toughness. It can cause a variety of problems in the manufacture of aluminium alloy castings. Therefore, the purification of the molten aluminium alloy is one of the most important processes for improving the quality of Al-products. Filters have been used for many years in order to improve the quality of castings. The inclusions in molten secondary AlSi7Mg0.3 cast were removed using depth filtration by ceramic foam filters of 20 ppi porosity. Were used 4 types of ceramic filters in 2 thicknesses (15 and 22 mm); Brinell hardness and porosity were measured. Quality of microstructure (occurrence of oxidic particles and larger non-metallic inclusions) was observed. Experimental results show that the insertion of ceramic filters into the inlet system has contributed primarily to a decrease in porosity. On the microstructure, the inclusion of filters was not significantly reflected.
EN
Designers have a major interest about fatigue properties of materials used in transport industry. Each component in transport works under alternating stress. From this point of view the fatigue properties are important for single parts lifetime resulting into safety of whole components as cars and airplanes what leads to safety on the roads or air and have influence on human life as well. Therefore this paper deals with fatigue properties of wrought Inconel alloy IN 718 and aluminum cast alloy AlSi9Cu3. Both materials were put on fatigue push – pull test, but Ni – based IN 718 alloy at frequency of loading around 20 000 kHz (High Frequency High Cycles Fatigue) and aluminum alloy AlSi9Cu3 at frequency of loading around 80 Hz (Low Frequency High Cycles Fatigue). These parameters were chosen with respect of usage such materials for production of components used in transport industry applications. Results after fatigue tests are presented as Wohler curve. For prediction of source of fracture the SEM fractography analysis of fatigue fracture surfaces was made.
EN
The Ni-base superalloys are used in the aircraft industry for the production of aero engine most stressed parts, turbine blades or turbine discs. Quality of aero jet engine components has a significant influence on the overall lifetime of a jet engine as itself as well as the whole airplane. From this reason a dendrite arm spacing, grain size, morphology, number and value of γ' - phase are very important structural characteristics for blade or discs lifetime prediction. The methods of quantitative metallography are very often used for evaluation of structural characteristics mentioned above. The high-temperature effect on structural characteristics and application of quantitative methods evaluation are presented in this paper. The two different groups of Ni-base alloys have been used as experimental material: cast alloys ZhS6K and IN713LC, which are used for small turbine blades production and wrought alloys EI 698VD and EI 929, which are used for turbine disc production. Selected alloys have been evaluated in the starting stage and after applied heattreatment at 850°C for 24 hrs. This applied heat-treatment causes structural changes in all alloys groups. In cast alloy dendritic structure is degraded and gamma prime average size has grown what has a negative influence on turbine blade creep rupture life. Wrought alloys show partially grain boundary melting and grain size changed due to recrystallization what causes mechanical properties decreasing - ultimate tensile strength mainly.
EN
The quality of aluminum casts is necessary in order to reach sufficient properties required for application. The decreasing in the properties of aluminum cast mainly related with microstructure, especially with size and morphology of second phases. One of such second phases in aluminum alloys are the β-phases. These phases are unwonted mainly because of the decreasing of mechanical properties. The contribution is deal with influence of addition of Mn to affecting the formation of βphases in the AlSi7Mg0.3 and AlSi7Mg0.6 cast alloys. These materials are used for application especially automotive industry. The results shows, that addition of Mn is not sufficient for affecting of formation of the Fe-rich phases in AlSi7Mg0.6 cat alloys, but in the AlSi7Mg0.3 this addition lead to changes in formation of Fe-rich intermetallic phases.
EN
Colour Metallography is a set of light metallographic microscopy methodologies that utilize phase colour contrast as a source of new structure information compared to conventional techniques. In many cases, colour contrast can be induced where no identifiable phase contrast is obtained by conventional techniques. With the help of colour contrast, we gain new information on the structure of Al-Si alloys, especially intermetallic phases, in which the benefits of its use in casting quality control are of benefit. Blue-yellow contrast is definitely more pronounced than dark grey or light grey contrast. There is no substantial reproducible colour reproduction, since it is irrelevant whether the two phases are distinguished by blue-yellow or green-ocher contrast. When using the colour contrast, the structural components differ not only according to their microscopic appearance, but also based on the knowledge of the chemical composition of alloys, interactions between structural components, knowledge of the possible influence of Al-alloys structure (e.g. refining, modifications, heat treatment). Colour contrast in quality control of Al-Si alloys was applied to AlSiMg cast alloy (AlSi7Mg0.3; AlSi7MgTi; AlSi10MgMn; etc.).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.