Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Predictive Maintenance presents an important and challenging task in Industry 4.0. It aims to prevent premature failures and reduce costs by avoiding unnecessary maintenance tasks. This involves estimating the Remaining Useful Life (RUL), which provides critical information for decision makers and planners of future maintenance activities. However, RUL prediction is not simple due to the imperfections in monitoring data, making effective Predictive Maintenance challenging. To address this issue, this article proposes an Evidential Deep Learning (EDL) based method to predict the RUL and to quantify both data uncertainties and prediction model uncertainties. An experimental analysis conducted on the C-MAPSS dataset of aero-engine degradation affirms that EDL based method outperforms alternative machine learning approaches. Moreover, the accompanying uncertainty quantification analysis demonstrates sound methodology and reliable results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.