Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 34

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
1
Content available Human machine interface for piezo control system
EN
The increasing complexity of scientific experiments puts a large number of requirements on the systems, which need to control and monitor the hardware components required for the experiments. This article discusses three different technologies of developing Human Machine Interface (HMÏ) for the Piezo Control System (PCS) developed at the Lodz University of Technology (TUL). The purpose of the PCS system is compensating the detuning of a superconducting accelerating structure caused by the Lorentz force. A set of full-custom HMI operator interface was needed to operate the prototype device. In order to select the technology, which would best suit the requirements; the interface was designed and developed in native Qt, Qt Quick and EPICS. The comparison was made and their advantages and drawbacks are presented.
2
EN
The production of stereoscopic motion pictures has been recently getting increasingly popular. To provide the best quality of the resulting image, the parameters controlled must precisely correspond to the values calculated by the stereoscopic image analysis platform or chosen by a camera operator. Currently no integrated system exists, which can provide remote monitoring and control of the parameters of 3D rig and cameras on it. The parameters should be controllable both by the Rig Controller software, tablet application or hand controller. The paper discusses an innovative system for remote control of 3D camera rig created within the Recording of 3D Image (ROS3D) research project. The system controls several parameters of both camera rig - stereo base, convergence and camera lenses - focus distance, aperture and focal length. Several approaches of implementation of a solution for the aforementioned problem are presented and compared. The first proposed approach used custom servo motor controller with CAN bus as the communication interface between connected devices, i.e. Rig Controller board and hand manipulators. Another solution contains a commercial servo motor controller connected to the Rig Controller board via RS232 and commercial hand controller. D-Bus Inter-Process Communication (IPC) system is used to communicate between the servo motor controller drivers and Rig Controller software.
EN
The paper describes a new methodology that allows to design scalable complex control and data acquisition systems taking into consideration the additional, non-functional requirements of High-Energy Physics (HEP). Electronic systems applied in HEP often operate in difficult conditions. Access to such devices is difficult or even impossible. The HEP systems require high availability, serviceability and upgradeability. The operating conditions of these systems are even more difficult than for telecommunication devices. Therefore, a different methodology should be applied than for classical telecommunication systems, when designing electronics used in high-energy physics applications. Electronic systems also need a suitable hardware platform that not only assures high availability, simplifies maintenance and servicing but also allows to use mixed analogue-digital signals. The author made an attempt to develop a new methodology suitable for designing of complex data acquisition and control systems of HEP. The Low Level RF (LLRF) system of European Free Electron Laser (EXFEL) and Image Acquisition System (IAS) prototype developed for International Thermonuclear Experimental Reactor (ITER) tokamak are presented as examples of complex electronic systems that were designed according to the proposed methodology.
EN
The paper presents a module for acquisition of stereoscopic image through SDI interface, designed for Registration of Stereoscopic Image project. As a component of an upgradable FPGA-based system for rapid calibration of 3D camera rigs, the module serves the purpose of acquiring an SDI stream from a set of two cameras and outputting it to either a dedicated SDI output or an HDMI output after processing in the FPGA. The upgradability was achieved with use of a combination of an FMC Carrier Card with the FMC module, which could be redesigned for higher data throughput and replaced in the future. There was no available solution meeting the requirements of the system at the time of the project. The necessary design requirements are discussed and a short specification is given.
PL
Artykuł prezentuje moduł do akwizycji obrazu stereoskopowego z użyciem interfejsu SDI, zaprojektowany dla projektu Rejestracja Obrazu Stereoskopowego 3D (ROS3D). Jako podzespół systemu opartego o układ FPGA do kalibracji zestawu dwóch kamer, urządzenie to ma za zadanie akwizycję i kondycjonowanie obrazu w formie strumienia SDI oraz konwersję obrazu wynikowego po analizie i przetworzeniu w FPGA na strumienie danych SDI bądź HDMI. Modułowość została osiągnięta z użyciem standardu FMC, który pozwala na wymianę pojedynczych komponentów systemu na ich odpowiedniki z lepszymi parametrami w przyszłości. Żadne rozwiązanie spełniające wymagania projektu nie było dostępne w czasie opracowywania systemu. W artykule omówione są wymagania projektu oraz krótka specyfikacja modułu.
EN
Nowadays high energy physics scientists build and design systems that are complex in terms of the huge amount of subsystems and individual components. A single subsystem may consist of a few tens of thousands digital and analogue channels and sensors. As a result, the data rates captured in modern systems may result in gigabytes per second. Complex systems could generate various alarms and provide other diagnostic information. Consequently, a huge number of variables are needed to control and monitor the system. It could be a real challenge to provide access to all alarms and diagnostic information in systems composed of thousands of channels. In this sense, it is necessary to develop a methodology of designing Human Machine Interfaces (HMI) that will be simple to use and allow describing of relatively complex systems. This paper describes an HMI scheme able to obtain and present data from High Energy Physics systems. The purpose of this paper is to evaluate HMI panels dedicated for complex systems. The prototype HMI uses the demonstration PXIe-based Neutron Flux Monitor (NFM) developed by the Department of Microelectronics and Computer Science. This NFM is going to provide essential information for plasma operation in the ITER plant. The HMI involves a Graphical User Interface and an Alarm Management Scheme, all based on the Experimental Physics and Industrial Control System (EPICS) framework. The Graphical User Interface (GUI) includes the use of several tools provided by the Control System Studio as well as JavaScript, rules and actions to dynamically present data to the operators. In regards to alarm management, a scheme is proposed to efficiently handle alarms by presenting the relevant information and controls to quickly react to alarms.
PL
Obecnie systemy wykorzystywane w eksperymentach fizyki wielkich energii składają się ze znacznej liczby podsystemów i komponentów. Pojedynczy podsystem może obsługiwać nawet kilkadziesiąt tysięcy kanałów cyfrowych i analogowych oraz sensorów, w wyniku czego ilość danych zbieranych przez system jest liczona w gigabajtach na sekundę. Skomplikowane systemy mogą generować różne alarmy i dostarczać inne informacje diagnostyczne. W związku z tym, sterowanie i monitorowanie systemów wymaga wielu zmiennych. Umożliwienie dostępu do wszystkich alarmów i informacji diagnostycznych w systemach składających się z tysięcy kanałów stanowi poważne wyzwanie. Z tego względu niezbędne jest opracowanie metodologii projektowania paneli operatorskich HMI (Human Machine Interface) zbudowanych w prosty sposób, jednak pozwalających na obsługę stosunkowo złożonych systemów. Artykuł przedstawia system HMI dedykowany do zbierania i wizualizacji danych z systemów fizyki wielkich energii. Celem niniejszego artykułu jest ocena HMI dedykowanego dla skomplikowanych systemów. Opisywany prototypowy panel HMI wykorzystuje system monitorowania strumienia neutronów NFM (Neutron Flux Monitor), bazujący na standardzie PXIe, opracowany w Katedrze Mikroelektroniki i Technik Informatycznych. System NFM będzie dostarczał najważniejsze informacje dla użytkowania plazmy w ośrodku ITER. HMI składa się z graficznego interfejsu użytkownika GUI (Graphical User Interface) oraz Systemu Zarządzania Alarmami, zbudowanego w oparciu o platformę EPICS (Experimental Physics and Industrial Control System). Interfejs HMI korzysta z narzędzi dostarczanych przez CSS (Control System Studio) oraz języka JavaScript, reguł i akcji, aby na bieżąco prezentować dane operatorom. W kwestii obsługi alarmów, zaproponowano schemat prezentacji właściwych informacji i metod obsługi, pozwalający w wydajny sposób zarządzać alarmami.
EN
European XFEL project developed in Hamburg by Deutsches Elektronen-Synchrotron contains a linear accelerator capable of generating light pulses at extremely short wavelengths, which will enable observing short lasting phenomena at atomic scale. Mode-locked lasers are commonly used in such facilities. Laser diode driver (LDD) is a significant element in the beam monitoring system, which will be used in the XFEL laser. Its role is to provide constant current source, linear, noiseless, and accurate, that delivers exactly the current to the laser diode that it needs to operate for a particular application. To ensure stable power output to the laser diode, PI controller was implemented. The code of the PI routine was optimized to enable higher frequency of its execution, which should improve the regulation parameters. This paper presents the microprocessor-based laser diode driver that can be used for a free electron laser system. It focuses on the firmware based on a real-time operating system (RTOS) developed to provide good stability of PI regulation combined with high flexibility in terms of system control.
PL
European XFEL to projekt lasera z akceleratorem liniowym budowany w Hamburgu przez Deutsches Elektronen-Synchrotron. Jest zdolny do generowania impulsów światła o ekstremalnie krótkich częstotliwościach. Dzięki temu umożliwi obserwację krótkotrwałych zjawisk w skali atomowej. Lasery synchronizowane fazowo są powszechnie wykorzystywane w tego typu systemach. Sterownik Diody Laserowej (LDD) jest istotnym elementem systemu monitorowania wiązki laserowej, który zostanie użyty w laserze XFEL. Jest to liniowe źródło prądowe o stałym natężeniu i niskim poziomie szumów, którego zadaniem jest dostarczanie zadanego napięcia odpowiedniego do potrzeb konkretnego zastosowania. Kontroler PI został wykorzystany, aby zapewnić dostarczanie stałej mocy do diody laserowej. Kod kontrolera został zoptymalizowany tak, aby uzyskać wyższą częstość jego wykonania, co powinno mieć pozytywny wpływ na jakość regulacji. Artykuł przedstawia sterownik diody laserowej oparty na mikroprocesorze, który może być użyty w laserach na swobodnych elektronach. Opisane jest w szczególności oprogramowanie oparte o system czasu rzeczywistego, zaprojektowany tak, aby zapewnić wysoką stabilność regulacji kontrolerem PI oraz dużą elastyczność w zakresie sterowania.
EN
As a result of a growing interest in the xTCA systems by research centers conducting High Energy Physics (HEP) experiments, the PICMG xTCA for Physics Coordinating Committee is developing a new, attractive standards. They are specifically dedicated to control and data acquisition systems of HEP applications. These new specifications define a number of extensions to the Advanced Telecommunications Computing Architecture (ATCA) and Micro Telecommunications Computing Architecture ( μ TCA) standards. The MicroTCA for Physics specification, named MTCA.4, defines some new solutions in order to simplify an application of μ TCA specification in HEP facilities. The most important of them is μ RTM module which can be connected to the Advanced Mezzanine Card (AMC) and provides more usable area and additional I/O connectors at the rear of the shelf. The MTCA.4 also introduces additional channels dedicated for timing and synchronization signals that are available on backplane. Due to the fact that xTCA for Physics is a new specification which has not been officially published, both the AMC and μ RTM modules and the software for the MMC with possibility of μ RTM handling are not yet available. For this reason the preparation of firmware for the Module Management Controller (MMC) for AMC modules compatible with MicroTCA for Physics specification is required. This paper presents a structure of the MMC for the μ TC (MicroTCA-based Controller) board. It also describes the microcontroller software which fulfills the role of the MMC.
EN
The High Energy Physics (HEP) experiments, due to their large scale, required performance and precision, have to be controlled by complex, distributed control systems. The systems are responsible for processing thousands of signals from various sensors of different types. Very often, one of the data sources applied in such systems are visible light/infrared cameras or other imaging sensors, which provide substantial information about studied phenomena. High data throughput for camera systems require dedicated mechanisms for data collecting and processing. Moreover, the images from cameras should be also available to system operator. It needs the support from both operator panels interface and control application which should provide data in the dedicated format. The paper presents two different approaches to image distribution, processing and visualisation applied in distributed control systems. Discussed is the issue of support for cameras and image data implemented in the Distributed Object Oriented Control System (DOOCS) and an example control system designed to the needs of image acquisition system on the base of the Experimental Physics and Industrial Control System (EPICS) environment.
9
EN
The paper describes an universal module for video stream acquisition from fast cameras with Camera Link interface. The first version of the referenced standard defines three configurations: Base, Medium and Full. The developed module supports all of them achieving transmission speeds up to 5.44 Gb/s for raw image data in the Full configuration. The module is designed according to FPGA Mezzanine Card (FMC) standard and can cooperate with carrier boards containing High-Pin Count (HPC) version of the connector. The module was tested with the TEWS TAMC-641 module.
EN
The Advanced Telecommunications Computing Architecture (ATCA) and Micro Telecommunications Computing Architecture (μTCA) standards, intended for high-performance applications, offer an array of features that are compelling from the industry use perspective, like high reliability (99,999%) or hot-swap support. The standards incorporate the Intelligent Platform Management Interface (IPMI) for the purpose o advanced diagnostics and operation control. This standard imposes support for non-volatile Field Replaceable Unit (FRU) information for specific components of an ATCA/μTCA-based system, which would typically include description of a given component. The Electronic Keying (EK) mechanism is capable of using this information for ensuring more reliable cooperation of the components. The FRU Information for the ATCA/μTCA implementation elements may be of sophisticated structure. This paper focuses on a software tool facilitating the process of assembling this information, the goal of which is to make it more effective and less error-prone.
EN
High energy physic experiments conducted in modern accelerators or fusion reactors require to store and process enormous amount of information. For such systems it is extremely important to correctly design and implement software to maximally utilize computation power offered by available hardware. Overhead limitations introduced by factors like task scheduling, thread synchronization, dynamic memory allocation, data distribution or incorrect hardware use must be limited to minimum. The paper presents several potential source of efficiency limitation that should be taken into consideration during development process of software for data acquisition systems in order to maximally utilize throughput of the offered hardware. Additionally, methods to minimize impacts of such problems and experimental results of proposed improvements are presented.
PL
Eksperymenty przeprowadzane we współczesnych akceleratorach lub reaktorach fuzyjnych wymagają systemów komputerowych pozwalających na przechowywanie i przetwarzanie ogromnych ilości danych. Proces projektowania i implementacji dla takich systemów wymaga specyficznego podejścia, aby móc maksymalnie wykorzystać dostępne zasoby sprzętowe. Szczególnie istotnym staje się minimalizacja lub eliminacja takich czynników wpływających na wydajność pracy jak przełączanie zadań, synchronizacja pomiędzy wieloma wątkami, dynamiczna alokacja pamięci, przekazywanie danych w systemie oraz inne, w tym również związane z używaną platformą sprzętową. W artykule przedstawiono wybrane źródła ograniczeń wydajności dla takich systemów, które w szczególności należy wziąć pod uwagę podczas projektowania systemów o wysokiej wydajności. Ponadto przedstawiono zastosowane rozwiązania, które ograniczają wpływ wymienionych czynników na wydajność systemu i zaprezentowano uzyskane wyniki.
PL
Artykuł przedstawia projekt selektywnego detektora promieniowania neutronowego, zbudowanego z wykorzystaniem układu cyfrowego wrażliwego na odwracalne błędy pojedyncze SEU (ang. Single Event Upset). Dla zwiększenia wrażliwości struktury rejestru na występowanie odwracalnych błędów SEU opracowano szereg metod, zaprezentowanych w artykule. Przedstawiono też symulacje określające warunki poprawnej pracy oraz parametry układu, które zgodnie z zapewnieniem dostawcy technologii powinien spełniać.
EN
The paper deals with neutron radiation detector design. The neutron detector was designed with application of sensitive to reversible Single Event Upsets (SEUs) digital circuit. The detector bases on a modified shift register (see Fig. 3), using dual supply voltage.. The paper presents a number of methods that were developed to enhance sensitivity of the detector to reversible SEUs. There are discussed physical phenomena that influence the technological fabrication process and topology of the integrated circuit. There are given some exemplary parameters of the designed register (input capacitance, clock-to-output delay) for the internal flip-flops, the pre-layout, as well as the post-layout (with extracted parasitic components) simulations, with visible (e.g. approx. 2-3 times) difference between the ideal (pre-layout) and real (post-layout) design. The simulation tests and the final layout (see Fig. 4) were prepared using CADENCE IC environment in 6.1.4 version, as a process design kit for chosen ITE CMOS technology. The general research background and realisation perspective (selected foundry run) are shown in the conclusion paragraph. Also the perspectives for a future testbench circuit in real and factual radiation environment are briefly described.
EN
Free Electron Laser in Hamburg (FLASH) and X-Ray Free Electron Laser (XFEL) are linear accelerators that require a complex and accurate Low Level Radio Frequency (LLRF) control system. Currently working systems are based on aged Versa Module Eurocard (VME) architecture. One of the alternatives for the VME bus is the Advanced Telecommunications and Computing Architecture (ATCA) standard. The ATCA based LLRF controller mainly consists of a few ATCA carrier boards and several Advanced Mezzanine Cards (AMC). AMC modules are available in variety of functions such as: ADC, DAC, data storage, data links and even CPU cards. This paper focuses on the software that allows user to collect and plot the data from commercially available TAMC900 board.
EN
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of hundred of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power |1-3|. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsches Elektro wen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator / sensor configuration. Therefore, it is necessary to design a distributed control system which could be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecommunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The already performed tests of ATCA LLRF control system proofed the possibilities of usage of such a standard for high energy physics experiments |4|. The paper presents the concept of integration of the piezo compensation system to the ATCA standards with special emphasis to the hardware part of the system. Moreover, the first results from carried out tests of the prototype power supply unit for piezo drivers integrated to ATCA board will be presented.
EN
PCI Express architecture is a widely used communication bus designed for industrial application. Additionally, according to PICMG 3.4 specification it is a part of ATCA architecture. One of the features offered by PCI Express standard is possibility of replacing the system components without shutting down entire system. In this paper, authors present general overview of Hot-Plug implementation in Linux operating system used in ATCA carrier board.
EN
PCIExpress architecture is widely used communication bus designed, among other things, for industrial application. Additionally, according to PICMG 3.4 specification it is part of an ATCA architecture. For that reason PCIExpress was used as communication interface for data transmission between ATCA carrier boards and AMC modules for the new control system for XFEL linear accelerator. In this paper authors present general overview of this system, describe communication protocols designed to exchange data with external user application and show results of performance test.
EN
The Advanced Telecommunications Computing Architecture (ATCA) specification allows to meet the newest trends in high speed communication technologies. Furthermore, it provides manageability, availability and exceptional reliability at 99.999% level. Therefore, this architecture is perfect to use in control systems of complex projects like the Free-Electron Laser in Hamburg (FLASH) or the X-ray Free Electron Laser (X-FEL) that work with high-frequency signal processing, use high-speed communication protocols such as PCIe, Gigabit Ethernet or RocketIO and require continuous stable operation. Modular construction allows for flexible system configuration. What is worth emphasizing, in contrast to previous solutions like, VME (Versa Module Eurocard), it is possible to change the system configuration without the need for power shutdown. Hot-plug functionality is delivered by Intelligent Platform Management Interface (IPMI) system. For this reason, all ATCA units, which can be replaced in the field should have Intelligent Platform Management Controller (IPMC) that provides IPMI functionality. The IPMC is responsible for management and control of module on which it is placed. Due to the fact that the IPMC operates independently of another components, it allows to activation and deactivation other functional blocks of the module. For this purpose if has to communicate with the Shelf Manager according to IPMI standard. The IPMC monitors also vital operational parameters such as temperature, voltage, current and reports all abnormalities to the Shelf Manager. This paper presents the IPMC for ATCA Carrier Board with three AMC Bays. All IPMC functionalities required by ATCA specification are in this case fulfilled by microcontroller dedicated for IPMI management in xTCA systems.
EN
One of the most important features of the Advanced Telecommunications Computing Architecture (ATCA) contributing to its exceptional reliability and availability is its hot-swap functionality. In order for the user to be able to add and remove the components of an ATCA shelf without the necessity of switching the power on and off the PCI Industrial Computer Manufacturers Group (PICMG) specification clearly enumerates the stages a Field Replaceable Unit (FRU) has to go through upon insertion into and extraction from the shelf. These stages form the activation and deactivation processes that occur every time an element is changed in the ATCA system. This paper focuses on these processes placing the emphasis on the Electronic Keying (EK) implementation in the Intelligent Platform Management Controller (IPMC) software developed for the self-designed ATCA Carrier Board (CB). This CB is considered to be used in the Low Level RF (LLRF) control system of the X-Ray Free Electron Laser (XFEL). It utilizes the standard-defined PCI Express (PCIe) interface as well as introduces proprietary protocols in form of Low Latency Links (LLL).
19
Content available Evaluation of an ATCA-based LLRF system at FLASH
EN
Future RF Control systems will require simultaneous data acquisition of up to 100 fast ADC channels at sampling rates of around 100 MHz and real time signal processing within a few hundred nanoseconds. At the same time the standardization of Low-Level RF systems are common objectives for all laboratories for cost reduction, performance optimization and machine reliability. Also desirable are modularity and scalability of the design as well as compatibility with accelerator instrumentation needs including the control system. All these requirements can be fulfilled with the new telecommunication standard ATCA when adopted to the domain of instrumentation. We describe the architecture and design of an ATCA based LLRF system for the European XFEL. Initial results of the demonstration of such a system at the FLASH user facility will be presented. Presented are the results of operating essential components of a prototype during the machine studies in January and March 2009.
EN
Gamma and neutron radiation is produced during the normal operation of linear accelerators like Free-Electron Laser in Hamburg (FLASH) or X-ray Free Electron Laser (X-FEL). Gamma radiation cause general degeneration of electronics devices and neutron fluence can be a reason of soft error in memories and microcontrollers. X-FEL accelerator will be built only in one tunnel, therefore most of electronic control systems will be placed in radiation environment. Exposing control systems to radiation may lead to many errors and unexpected failure of the whole accelerator system. Thus, the radiation monitoring system able to monitor radiation doses produced near controlling systems is crucial. Knowledge of produced radiation doses allows to detect errors caused by radiation, schedule essential replacement of control systems and prevent accelerator from serious damages. The paper presents the project of radiation monitoring system able to monitor radiation environment in real time.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.