Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The results of experimental investigations of powerful hydrogen plasma jets and fast ion beams interaction with various materials (austenitic chromium-manganese steels, pure vanadium, tungsten, graphite, copper, and their alloys: Cu-4 mass% Ni and Cu-10 mass% Ga) are presented. The materials were placed on the discharge axis of the PF-1000 device and irradiated with fluxes of fast ions (of energy in the range from tens keV up to several MeV) and with plasma streams (of power flux density q~(108 109) W/cm2). It was found that the fast ions and plasma streams caused different damages to the aforementioned materials. A diverse character of the damages to the individual investigated material was revealed. Some peculiarities of the process as well as the correlation between the surface density of the "macroscopic" structural defects (blisters and craters) and the fluence of the fast ions implanted in the specimen are discussed.
EN
The report describes some of the results obtained in an experimental study of the impact of a powerful plasma stream and a fast ion beam generated in a PF-1000 device on different materials perspective for the use in radiation loaded parts of pulsed plasma installations. Investigations were done during and after the interaction processes. It is shown that in case of irradiation of samples only by high power flux density plasma streams the effect of detachment still preserved. At the same time a low power flux density high-energy ion beam plays an important role in the process of saturation of the irradiated material by hydrogen.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.