Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The core of most power electronic systems involving DC/AC conversion is a voltage source inverter (VSI) that runs on some pulse-width modulation (PWM) strategy. Numerous PWM techniques have been reported in the literature over the past few decades, each having its own merits and limitations. This paper reviews some selected areas of two-level PWM VSI, namely proper utilisation of the DC bus without deteriorating the quality of the output waveform, switching-loss reduction in the linear and over-modulation zones, common-mode voltage and PWM strategies for its reduction or elimination, distortion of the output voltage owing to dead time, and its compensation. These phenomena are explained in brief, followed by discussions on different research works relevant to these areas, and their advantages and disadvantages. Finally, the paper shows prospective directions in which research may continue in these areas in future.
EN
Accurate current polarity detection is a major issue for successful compensation of dead-time distortion in pulse-width-modulated (PWM) voltage source inverter. The present study is concerned with the concept of shift in current-zero-crossing due to dead-time distortion compensation that results in error in current polarity detection and thus causes a problem with regard to the successful continuation of compensation. The phenomenon is analysed in detail, along with its dependence on different factors. The proposed concept is validated in digital simulation and also through experimental verification. The study also recommends the possible correction to be incorporated in view of such zero-crossing shift for achieving proper compensation, especially in case of current-sensor-less compensation techniques.
EN
This paper proposes a system design and control technique for a newly developed brushless and permanent magnetless synchronous generator-based variable-speed wind energy generation system, transferring power to a constant voltage dc grid via a three-level Vienna rectifier (VR). The recently established generator named Brushless Induction excited Synchronous Generator (BINSYG) is a wound field synchronous generator (WFSG), whose excitation is developed by controlling an Induction Machine fitted to the same machine structure and sharing the same magnetic core. A new controller is proposed that ensures the stable operation of BINSYG for a wide variation of shaft speeds. VR achieves sinusoidal input current and can control the power factor at its input, which is particularly suitable for wind energy applications. The top and bottom capacitor voltages of the VR are balanced using redundant switching combinations. The system with its proposed control algorithm is modelled in MATLAB/Simulink for a 5 kW rated BINSYG feeding power to a 750 V dc grid. The steady-state and dynamic state simulation results are presented and the controller performance is verified for a wide range of wind speeds. Further, real-time results using the OPAL-RT testbed are presented for the same system to verify the effectiveness of the overall control strategy.
EN
The present work describes a control methodology for a hybrid energy storage system (HESS) to improve its transient performance under dynamic load conditions. The proposed coordination control enhanced life cycle performance by segregating the power between battery energy storage systems (BESS) and a supercapacitor (SC). The BESS and SC are connected parallel to each other, and two individual DC–DC bidirectional converters connect them to a common DC bus. The coordination control is established between the controllers of BESS and the SC of HESS, which helps to utilise the usable energy capacity of the HESS. The charging/discharging current of the BESS is controlled within the allowable safety range based on the slope and magnitude of the BESS current. The high-frequency power component is handled by the SC, which helps to reduce the extra exhaustion on the BESS during operation with a higher current. The proposed coordination control of HESS is validated through simulation and the results show the effectiveness of the proposed controller.
EN
This paper proposes an improved space vector pulse width modulation (SVPWM) based DC link voltage balancing control of a three-phase three-level neutral point clamped (NPC) centralised inverter supplying the generated power from photo voltaic (PV) array to a three-phase utility grid. Two possible schemes have been developed based on the power conversion stage between PV array and the utility grid namely, two-stage (three-level boost converter three-phase three-level NPC inverter) and single-stage (three-phase three-level NPC inverter alone). The comparison between these two schemes has been thoroughly discussed in terms of the control strategies employed, power loss analysis and efficiency. The performance of the centralised inverter under different modes of operation has been investigated by developing the required control strategies for smooth operation. Using the proposed control strategy, the centralised inverter can be operated as a static synchronous compensator (STATCOM) during night time, if needed. The power loss incurred in the power-electronic converters has been analysed for constant and also for variable ambient temperature. The effectiveness of the centralised inverter as an active filter (AF) has also been verified when a three-phase non-linear load is considered in the system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.