Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The purpose of this experiment was to investigate the effects of salinity (NaCl) on the mineral composition and macro- and micronutrient contents of rice plants. The experiment was conducted at the Department of Biotechnology’s experimental area in SVPUAT Meerut. Various salinity treatments were applied, including T0 (Control), T1 (60 mM NaCl), T2 (80 mM NaCl), T3 (100 mM NaCl), T4 (ZnO NPs 50 mg/L + 60 mM NaCl), T5 (ZnO NPs 50 mg/L + 80 mM NaCl), and T6 (ZnO NPs 50 mg/L + 100 mM NaCl). The results analysis revealed that the micro- and micronutrients in rice genotypes decreased compared to the control treatment. However, when 50 mg/L of ZnO-NPs were applied, the concentrations of both macro- and micronutrient contents in rice plants were found to increase. This is the most significant finding of this research.
EN
An exciting new window of opportunity has opened up for environmentally responsible farming with the advent of the nanotechnology era: the role of nanoparticles (NPs) to mitigate abiotic stresses. NPs have unique physiochemical characteristics that make them an attractive study subject. Rice growth and yield are severely inhibited by salinity, a major detrimental abiotic factor. However, the impact of NPs on rice seeds germination characteristics and physio-biochemical phenomena under salt stress conditions remains poorly understood. Accordingly, we intended to look at how zinc oxide nanoparticles (ZnO-NPs) affected germination processes and the early seedling stage while the rice plants (Kargi and CSR 30 rice genotypes) were put under salinity stress. Different germination characteristics parameters were considered, e.g., germination percentage (GP) relative seed germination rate (RGR), and seed vigour index (SVI) determined after eight days of treatment with ZnO-NPs at a concentration of 50 mg/L on rice seed. After passing the germination test, the seeds were placed in Hoagland hydroponic solution and given another week of ZnO-NPs treatment to evaluate the seedling growth and phyto-biochemical characteristics, such as shoot height and root length, inhibition percentage of shoot height and root length, chlorophyll and carotenoid stability index, chlorophyll and carotenoid inhibition percentage, malondialdehyde (MAD) content and antioxidant enzymatic activities (SOD, APX).This investigation demonstrated that 50 mg/L ZnO-NPs have the potential to alleviate the effect of salt stress on rice genotypes during the germination stage.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.