Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In the present paper we focus on online monitoring system for predictive maintenance based on sensor automated inputs. Our subject was a device from Maritsa East 2 power plant - a mill fan. The main sensor information we have access to is based on the vibration of the nearest to the mill rotor bearing block. Our aim was to create a (nonlinear) model able to predict on time possible changes in vibrations tendencies that can be early signal for system work deterioration. For that purpose, we compared two types of recurrent neural networks: historical Elman architecture and a recently developed kind of RNN named Echo stet networks (ESN). The preliminary investigations showed better approximation and faster training abilities of ESN in comparison to the Elman network. Direction of future work will be increasing of predications time horizon and inclusion of our predictor at lower level of a complex predictive maintenance system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.