Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Al-3 vol% CNT nanocomposites were processed by high-pressure torsion (HPT) at room temperature under the pressure in the range of 2.5-10 GPa for up to 10 turns. Optical microscopy, scanning electron microscopy, and transmission electron microscopy (TEM) were used to investigate the microstructural evolutions upon HPT. Mechanical properties of the HPT-processed disks were studied using tensile tests and microhardness measurements. The results show gradual evolutions in the density, microstructure, and hardness with increasing the number of turns and applied presure. Nanostructured and elongated Al grains with an average grain thickness of ~40 nm perpendicular to the compression axis of HPT and an aspect ratio of ~3 are formed after 10 turns under 6 GPa. Evaluating the mechanical properties of the 10-turn processed Al/CNT nanocomposites indicates a tensile strength of 321 MPa and a hardness of 122 Hv. The tensile fracture surface of the Al/CNT nanocomposite mostly demonstrates a smooth fracture manner with fine dimples resulting in a low tensile ductility of ~1.5%.
EN
In this study, the Taguchi method of design of experiment (DOE) was used to optimize the hydroxyapatite (HA) coatings on various metallic substrates deposited by sol-gel dip-coating technique. The experimental design consisted of five factors including substrate material (A), surface preparation of substrate (B), dipping/withdrawal speed (C), number of layers (D), and calcination temperature (E) with three levels of each factor. An orthogonal array of L18 type with mixed levels of the control factors was utilized. The image processing of the micrographs of the coatings was conducted to determine the percentage of coated area (PCA). Chemical and phase composition of HA coatings were studied by XRD, FT-IR, SEM, and EDS techniques. The analysis of variance (ANOVA) indicated that the PCA of HA coatings was significantly affected by the calcination temperature. The optimum conditions from signal-to-noise (S=N) ratio analysis were A: pure Ti, B: polishing and etching for 24 h, C: 50 cm min􀀀1, D: 1, and E: 300 °C. In the confirmation experiment using the optimum conditions, the HA coating with high PCA of 98.5 % was obtained.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.