Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Although polyamines (PA) belong to relatively simple aliphatic substances, their role in life processes of animals and plants is of key importance [1–5]. The group of the most important amines, called biogenic ones includes: Spermine (Spm): H2N(CH2)3NH(CH2)4NH(CH2)3NH2 Spermidine (Spd): H2N(CH2)3NH(CH2)4NH2 Putrescine (Put): H2N(CH2)4NH2. Of secondary importance are homologues of biogenic amines, occurring in lower contents in living organisms [2, 6–8]: 1,3-diaminopropan: H2N(CH2)3NH2 Cadaverine: H2N(CH2)5NH2 Homospermidine: H2N(CH2)4NH(CH2)4NH2 Norspermine (3,3,3-tet): H2N(CH2)3NH(CH2)3NH(CH2)3NH2 Thermospermine: H2N(CH2)3NH(CH2)4NH(CH2)4NH2 Caldopentamine: H2N(CH2)3NH(CH2)3NH(CH2)3NH(CH2)3NH2. The first polyamine discovered in a living organism was tetramine, a spermine crystallised out of sperm in 1678 by Van Leewenkeuk [9]. Putrescine was discovered in the end of the 19th century in microbes and then triamine: spermidine was discovered in the beginning of the 20th century [2]. Later studies have shown that in animal cells spermidine and spermine occur at elevated levels, while in prokaryotes spermidine and putrescine contents are dominant. Putrescine, spermidine, 1,3-diaminopropan, homospermidine, norspermidine, and norspermine have been found in many gramnegative bacteria and algae [7, 10, 11]. Total concentration of PA in living organisms is on the order of millimols, however, the concentration of free polyamines is much lower. A low level of free amines follows from the fact that they are involved in noncovalent interactions with biomolecules occurring in living organisms such as nucleic acids, proteins, or phospholipids. High concentrations of non-bonded polyamines have been detected first of all in young molecules in the process of growth, in particular in rapidly proliferating cancer cells [6, 12]. Elevated levels of free polyamines have been observed, e.g. in breast, colon, lung, prostate, and skin tumours, accompanied by changed levels of enzymes responsible for biosynthesis and catabolism of polyamines. Because of the increased level of free polyamines and a tendency of their interaction with nucleic acids and other bioligands, these compounds have become objects of intense study [1, 13–19]. There is no doubt that the regulation of biosynthesis of polyamines and catabolism is one of the most important pathways in the search strategy for chemoprevention and chemotherapeutic drugs [14, 15, 20–36]. The present state of knowledge of these processes, their significance in biological systems, and their application in medicine are presented in subsequent sections of this chapter.
PL
Zgodnie z wiedzą literaturową w nanostrukturach platyny oraz palladu możliwe jest wzbudzanie plazmonów powierzchniowych falami z zakresu widzialnego, a zatem możliwe jest ich zastosowanie we wzmocnionej powierzchniowo spektroskopii Ramana (SERS). Ponadto oba metale wykazują bardzo dobre właściwości katalityczne, dzięki czemu potencjalnie umożliwiają wzmocnienie sygnału ramanowskiego pochodzącego od produktów reakcji dla których są katalizatorami. W pracy przedstawiono i porównano uzyskane wzmocnienie sygnału ramanowskiego pochodzącego od rodaminy 6G osadzonej na nanostrukturach platyny, palladu oraz srebra, które zostały wytworzone metodą osadzania metalu z roztworu na miedzianym podłożu.
3
Content available Preparatyka materiałów SERS-aktywnych
PL
W artykule opisano opracowane metody preparatyki różnego typu materiałów zawierających nanocząstki srebra na potrzeby Wzmocnionej Powierzchniowo Spektroskopii Ramana (SERS). W pracy przedstawiono preparatykę koloidów srebra stabilizowanych za pomocą PVP (poliwinylopirolidon) oraz preparatykę koloidu srebra umieszczonego w materiale polimerowym.
PL
W artykule zaprezentowano metody otrzymywania nanomateriałów wykorzystywanych we wzmocnionej powierzchniowo spektroskopii Ramana (SERS). Scharakteryzowano powierzchnie zsyntetyzowanych materiałów oraz ich efektywność we wzmacnianiu sygnału Ramana substancji referencyjnej, rodaminy 6G. Przedstawiono dotychczasowe dane bibliograficzne dotyczące zastosowania wzmocnionej spektroskopii Ramana do detekcji związków będących markerami chorób nowotworowych oraz substancji, które potencjalnie mogą służyć jako markery w stanach chorobowych.
EN
Molecular complex formation between guanosine (Guo) and biogenic amines: putrescine (Put), spermidine (Spd) and spermine (Spm) as well as coordination of these ligands with the copper(II) ions have been studied. It has been found that the positive centres of noncovalent ion-dipole interactions are the protonated amine groups of the polyamines, while the negative centres are the endocyclic nitrogen atoms N(7) or N(1) of guanosine. In the binary systems at low pH, the main site of noncovalent interaction and a metallation centre in guanosine is the nitrogen atom N(7). With deprotonation of N(1), the reaction centre shifts from N(7) to N(1). At high pH the nitrogen atom N(1) becomes the main centre of interactions between the nucleoside and polyamines (PA) and it also becomes an effective site of Cu(II) ions bonding. The addition of spermine to the Cu(II)/guanosine system leads to a disappearance of the coordination dichotomy observed in binary systems, whereas the introduction of putrescine and spermidine extends the range of the dichotomy to high pH values.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.