Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The main goal of the article is to present the concept of using a simulation environment when designing an advanced fibre-optic seismometer (FOS) using a field-programmable gate array (FPGA) computing system. The first part of the article presents the advanced requirements regarding the FOS principle of operation, as well as the measurement method using a closed-loop operation. The closed-loop control algorithm is developed using the high-level language C++ and then it is synthesised into an FPGA. The following part of the article describes the simulation environment developed to test the operation of the control algorithm. The environment includes a model of components of the measurement system, delays, and distortions in the signal processing path, and some of the measurement system surroundings. The article ends with a comparison of simulation data with measurements. The obtained results are consistent and prove correctness of the methodology adopted by the authors.
EN
The paper presents the optimized implementation of the Lattice Boltzmann method on ARUZ, a massively parallel FPGA-based simulator located in Lodz, Poland. Compared to previous publications, a performance improvement of 46% has been achieved on D2Q9 lattice due to overlapping of communication with computation. The presented approach is suitable also for other cellular automata-based simulations. Extrapolation of results from the single ARUZ board suggests, that LBM simulation of 1080 × 480 lattice on 18 panels of ARUZ would reach the performance of 302 · 103 MLUPS (Million Lattice Updates per Second). This implementation has been compared to the classical supercomputer solution, giving much better power efficiency (3000 MLUPS/kW vs. 1280 MLUPS/kW, respectively).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.