Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Solving two-point boundary value problems has become a scope of interest among many researchers due to its significant contributions in the field of science, engineering, and economics which is evidently apparent in many previous literary publications. This present paper aims to discretize the two-point boundary value problems by using a quartic non-polynomial spline before finally solving them iteratively with Conjugate Gradient (CG) method. Then, the performances of the proposed approach in terms of iteration number, execution time and maximum absolute error are compared with Gauss-Seidel (GS) and Successive Over-Relaxation (SOR) iterative methods. Based on the performances analysis, the two-point boundary value problems are found to have the most favorable results when solved using CG compared to GS and SOR methods.
EN
The numerical method can be a good choice in solving nonlinear partial differential equations (PDEs) due to the difficulty in finding the analytical solution. Porous medium equation (PME) is one of the nonlinear PDEs which exists in many realistic problems. This paper proposes a four-point Newton-EGMSOR (4-Newton-EGMSOR) iterative method in solving 1D nonlinear PMEs. The reliability of the 4-Newton-EGMSOR iterative method in computing approximate solutions for several selected PME problems is shown with comparison to 4-Newton-EGSOR, 4-Newton-EG and Newton-Gauss-Seidel methods. Numerical results showed that the proposed method is superior in terms of the number of iterations and computational time compared to the other three tested iterative methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.