Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Distributed acoustic sensing (DAS) technology is a novel technology applied in vertical seismic profile (VSP) exploration, which has many advantages, such as low cost, high precision, strong tolerance to harsh acquisition environment. However, the field DAS-VSP data are often disturbed by complex background noise and coupling noise with strong energy, affecting the quality of seismic data seriously. Therefore, we develop a time–frequency analysis method based on low-rank and sparse matrix decomposition (LSMD) and data position points distribution maps (DPM) to separate signals from noise. We adopt Multisynchrosqueezing Transform to construct the approximate ideal time–frequency representation of DAS data, which reduces the difficulty of signal to noise separation and avoids the loss of some effective information to a certain extent. The LSMD is performed to separate the signal component and noise component preliminarily. In addition, combined with the separated low-rank matrix and sparse matrix, we propose the DPM to improve the accuracy of signal component extraction and the recovery ability of the method for weak signals through the joint analysis of the maps in time domain and frequency domain. Both synthetic and field experiments show that the proposed method can suppress coupling noise and background noise and recover weak energy signals in DAS VSP data effectively.
2
Content available remote Internal multiple prediction using high order born modeling for LSRTM
EN
In least squares migration (LSM), multiples are usually a type of noise. Although they contain information about underground structures, they also cause artifacts in imaging. Therefore, multiple attenuation is an important way to reduce these artifacts in LSM images. Reweighted least squares reverse time migration (RWLSRTM) can use the weighting matrix and the predicted multiples to eliminate artifacts. Because the LSM provides a high resolution model, we can predict the internal multiples by using high-order Born modeling. The method is based on the inverse scattering series (ISS), and the difference is that it forwards the modeling of the internal multiples in the time domain; the model is constructed by the RWLSRTM. Because this method does not require performing as many Fourier transforms as the ISS method, it requires less calculation. We have applied the predicted multiples in the RWLSRTM to remove the artifacts caused by the multiples. The RWLSRTM image can also serve as a parameter of multiple predictions and can make the results of multiple predictions more accurate. The results of numerical tests using synthetic data show that this method can remove artifacts of internal multiples well. A comparison with the ISS method shows that our method can reduce the calculation.
EN
Full waveform inversion (FWI) sufers from the cycle skipping problem, because the observed data usually lack low-frequency components or due to errors in the wavelet estimation. In addition, the strong low-frequency non-zero-mean noise can have a large impact on FWI results. Thus, we propose a local waveform traveltime correction scheme to solve the situations when the observed data lack low-frequency components or when the estimation for the wavelet is incorrect. We use a sliding time window, which is used to decrease the traveltime diferences between the calculated and observed data to increase the cross-correlation between them. Besides, we propose a zero-mean normalized cross-correlation misft function to reduce the interference of the low-frequency non-zero-mean noise. Therefore, we propose new approaches to improve FWI results whether the observed data lack low-frequency components or the observed data are contaminated by the non-zero-mean lowfrequency noise. Numerical examples on Marmousi model show the feasibility of a FWI based on the zero-mean normalized cross-correlation misft function and a FWI based on the local traveltime correction method.
4
EN
The conventional full-waveform inversion (FWI) often minimizes the objective function using some local optimization algorithms. As a result, when the initial model is not good enough, the inversion process will drop into a local minimum. The low-frequency components contained in seismic data are of vital importance for reducing the initial model dependence and mitigating the cycle-skipping phenomenon of FWI. In this research, a frequency extension method using the nth power operation is proposed, which compresses the seismic data in time domain and extends their frequency band. Based on this, we construct a new objective function using the nth power wavefeld and derive the corresponding gradient formula. The new objective function shows better property to overcome local minimum than the conventional one. When conduct inversion, we can invert from high-order to low-order successively, which is a new multiscale strategy. Since seismic data is more sensitive to source wavelet errors after high-order operation, we make the method more robust by proposing a source-independent method to mitigate the efects of source wavelet inaccuracy. After that, we extend the proposed method to encoded multisource waveform inversion. The numerical examples on the Marmousi model demonstrate that the proposed method can efectively mitigate the cycle-skipping of FWI, and it also has good anti-noise property.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.