Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W pracy przedstawiono opis wysokotemperaturowej syntezy nowego materiału katodowego dla ogniw Na-ion batteries o strukturze warstwowej P2-Na0,7Fe0,5Mn0,5O2. Zbadano strukturę krystaliczną oraz wyznaczono charakterystykę temperaturową przewodnictwa elektrycznego otrzymanego materiału. Na bazie uzyskanego tlenku przygotowano ogniwa elektrochemiczne o schemacie Na/Na+/NaxFe0,5Mn0,5O2. Dla tak skonstruowanych ogniw wyznaczono pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. Najwyższa uzyskana pojemność rozładowania ogniwa Na/Na+/NaxFe0,5Mn0,5O2 wynosiła 200 mAh/g przy szybkości rozładowania C/20. Monotoniczną zmianę potencjału zarejestrowano w zakresie 2-3 V. W oparciu o wyniki badań materiału katodowego Na0,7Fe0,5Mn0,5O2 metodą in-situ XRD w trakcie procesu ładowania i rozładowania ogniwa Na/Na+/Na0,7Fe0,5Mn0,5O2 stwierdzono, że struktura krystaliczna nie ulega zmianom w trakcie procesu elektrochemicznej deinterkalacji/interkalacji sodu z wyjątkiem odwracalnych zmian parametrów sieciowych.
EN
This work presents a high-temperature method of synthesis of a new cathode material for Na-ion batteries with the layered structure P2-Na0.7Fe0.5Mn0.5O2. The crystal structure and temperature dependence of electrical conductivity of the obtained material were investigated. The synthesized powder was applied as cathode material in Na/Na+/NaxFe0.5Mn0.5O2-type cells. Specific capacity of the cathode material, reversibility and stability during charge-discharge cycles measurements were carried out in order to characterize electrochemical properties of the cells. The highest discharge capacity of the Na/Na+/NaxFe0.5Mn0.5O2 cell was about 200 mAh/g with C/20 current rate. The monotonous voltage changes were recorded in the range of 2-3 V. Results obtained by the in-situ XRD technique during the process of charging and discharging of the Na/Na+/Na0.7Fe0.5Mn0.5O2 type cell provide a conclusion that the crystal structure of cathode material does not change during the electrochemical deintercalation/intercalation process of sodium except of reversible changes of structure parameters.
2
PL
W pracy przedstawiono opis wysokotemperaturowej syntezy nowego materiału katodowego dla ogniw Na-ion batteries, otrzymanego przez częściowe podstawienie kobaltu manganem w NaxCoO2. Zbadano strukturę krystaliczną oraz wyznaczono charakterystykę temperaturową przewodnictwa elektrycznego Na0,7Co0,7Mn0,3O2. Na bazie uzyskanego materiału przygotowano ogniwa elektrochemiczne o schemacie Na/Na+/NaxCo0,7Mn0,3O2. Dla tak skonstruowanych ogniw wyznaczono charakterystyki woltamperometryczne, pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. Najwyższa uzyskana pojemność rozładowania ogniwa Na/Na+/NaxCo0,7Mn0,3O2 wynosiła 104 mAh•g-1 przy szybkości rozładowania C/35. Monotoniczną zmianę potencjału zarejestrowano w zakresie 2,5-3,4 V. Materiał katodowy Na0,7Co0,7Mn0,3O2 jest stabilny w kontakcie z elektrolitem (1M roztwór NaClO4 w węglanie propylenu) w zakresie temperatury od -30 °C do 150 °C.
EN
This work presents a high-temperature method of synthesis of a new cathode material for Na-ion batteries. The material was obtained by substitution of cobalt with manganese in NaxCoO2. The crystal structure and temperature dependence of electrical conductivity of Na0.7Co0.7Mn0.3O2 were investigated. The obtained powder was applied as cathode materials in Na/Na+/NaxCo0.7Mn0.3O2-type cells. Cyclic voltammetry, specific capacity of a cathode material, reversibility and stability during charge-discharge cycles measurements were carried out to characterize electrochemical properties of the cells. The highest discharge capacity of Na/Na+/NaxCo0.7Mn0.3O2 cell was about 104 mAh•g-1 with C/35 current rate. The monotonous voltage changes were recorded in the range of 2.5-3.4 V. The Na0.7Co0.7Mn0.3O2-cathode material showed stability being in contact with electrolyte (1M solution of NaClO4 in carbon propylene) in the temperature range from -30 °C to 150 °C.
PL
W pracy przedstawiono opis syntezy nanometrycznego LiFePO4 oraz przygotowania na jego bazie kompozytu z dodatkiem węgla do zastosowania jako materiał katodowy w ogniwach Li-ion. Badano trzy metody wprowadzania dodatku węglowego: rozcieranie w moździerzu, mielenie w młynie oraz pirolizę żywicy nowolakowej. Na bazie otrzymanych kompozytów przygotowano ogniwa elektrochemiczne typu Li|Li+|LixFePO4. Dla tak skonstruowanych ogniw wyznaczono charakterystyki woltamperometryczne, pojemność właściwą materiału katodowego, odwracalność pracy ogniwa oraz stabilność podczas cyklicznego ładowania i rozładowania. W przypadku zastosowania materiału uzyskanego przez rozcieranie w moździerzu uzyskano ogniwa o napięciu ładowania i rozładowania odpowiednio 3,46 V i 3,50 V, pojemności rozładowania 166 mAh•g-1, odwracalności około 98% i stabilnej pracy w ciągu pierwszych dziesięciu cykli ładowania-rozładowania.
EN
This work presents procedures of the nano-sized LiFePO4 synthesis and preparation of LiFePO4-based composite cathode material with carbon addition for Li-ion batteries. Three methods of preparing the LiFePO4-C composite materials were investigated: grinding in an agate mortar, mechanical milling and pyrolysis of novolac resin. The obtained powders were applied as cathode materials in Li|Li+|LixFePO4-type cells. Cyclic voltammetry, specific capacity of the cathode material, reversibility and stability during charge-discharge cycles measurements were carried out to characterize electrochemical properties of the cells. The LiFePO4-C cathode material prepared by grinding in the mortar showed stable voltage of 3.46–3.50 V during charge and discharge cycling. The discharge capacity was about 166 mAh•g-1 with reversibility around 98% and high stability of capacity within the first ten cycles.
PL
W artykule przedstawiono opis syntezy nanometrycznego LiFePO4 oraz metodę chemicznej modyfikacji powierzchni w celu uzyskania materiału katodowego dla ogniw typu Li-ion o wysokiej pojemności. Modyfikacja powierzchni polegała na poddaniu wyjściowego materiału działaniu atmosfery redukcyjnej (mieszanina Ar-H2) w temperaturze 300°C. Przygotowane materiały katodowe użyto do konstrukcji ogniw o schemacie Li/Li+/LixFePO4. Najlepsze uzyskane ogniwa charakteryzowały się pojemnością rozładowania 158 mAh·g-1 w ciągu 10 pierwszych cykli pracy przy odwracalności wynoszącej 0,99.
EN
In this work, we presented a procedure of synthesis of the nano-sized LiFePO4 and method of chemical surface modification in order to obtain cathode material for Li-ion batteries with high discharge capacity. The surface modification of LiFePO4 were performed by annealing in reducing atmosphere (Ar-H2 mixture) at 300°C. The LiFePO4 powders were used as cathode material in Li+/LixFePO4 cells. They exhibited high discharge capacity around 158 mAh·g-1 in first 10 cycles and excellent cyclic ability around 0.99.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.