Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Improvement of Physical Properties of Viscose using Nano GEO2 as Doping Material
EN
The properties of viscose\TiO2 and viscose\TiO2\germanium dioxide (GeO2) are investigated and compared. The elemental mapping analysis using a field emission scanning electron microscope (FESEM) shows the excellent distribution of nanomaterials, while the energy dispersive X-ray (EDX) confirms its existence. The 500 s cycle of rubbing test indicates that the abrasion resistance of treated samples improves significantly. In addition, the doping of nano GeO2 enhances the strength of the treated samples. Furthermore, the thermal behavior of the treated samples, characterized by differential scanning calorimeter (DSC), results in a higher crystallization temperature and doping GeO2 increases the thermal properties of viscose in comparison with nano TiO2. The study of ultraviolet blocking indicates that doping GeO2 can improve the transmission of ultraviolet even from TiO2.
EN
This study discusses the effect of corona pretreatment and subsequent loading of titanium dioxide nanoparticles on self-cleaning and antibacterial properties of cellulosic fabric. The corona-pretreated cellulosic fabrics were characterized by fi eld emission scanning electron microscopy, and X-ray mapping techniques revealed that layers of the titania deposited on cellulose fi bers were more uniform than the sample without pre-corona treatment. The self-cleaning property of treated fabrics was evaluated through discoloring dye stain under sunlight irradiation. The antibacterial activities of the samples against two common pathogenic bacteria including Escherichia coli and Staphylococcus aureus were also assessed. The results indicated that self-cleaning and antibacterial properties of the corona-pretreated fabrics were superior compared to the sample treated with TiO2 alone. Moreover, using corona pretreatment leads to samples with good washing fastness.
3
Content available remote Fabrication of Multifunctional Nano Gelatin/Zinc Oxide Composite Fibers
EN
According to health studies, reinforcing gelatin is necessary in order to obtain the multifunctional material. In this study, nano zinc oxide (ZnO; at concentrations of 0.5%, 1% and 1.5%) was doped with gelatin and the solution was electrospun under specific conditions to obtain multifunctional gelatin/ZnO nanofibers. The morphology of the nanofibers was studied by field emission scanning electron microscope (FESEM), and energy-dispersive X-ray spectrometry (EDX) analysis indicated the presence of nano Zn on the surface of gelatin fibers. On the contrary, elemental mapping analysis proved the distribution of nano material along the nano gelatin fibers. The results show that the produced nano gelatin/ZnO composite increases the ultraviolet (UV) blocking of fabric significantly. It is also observed that electrospun gelatin/ZnO nanofibers have excellent bactericidal property against both Bacillus cereus (Gram-positive) and Escherichia coli (Gram-negative) bacteria.
4
EN
Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.