The characteristics of municipal solid waste in Indonesia tend to be wet and have a low calorific value. Therefore, a pre-treatment process is needed to dry the municipal solid waste before converting it into RDF. Biodrying is one of the solid waste drying methods that can be used for this purpose. This study aims to determine the effect of variations in bulking agents on the biodrying performance of municipal solid waste and to compare the resulting product with RDF standards. Reactor 1 consists of 100% organic waste without a bulking agent. Reactors 2, 3, and 4 contain organic waste mixed with straw, wood shavings, and rice husks, respectively, as bulking agents. The experiment lasted for 30 days. Measurements were taken for solid waste mass, temperature, moisture content, calorific value, proximate analysis (including volatile solids, fixed carbon, and ash content), and ultimate analysis. Statistical analysis of the test parameters showed that the addition of bulking agents significantly affected the moisture content and fixed carbon levels. A comparison between the biodrying results and RDF standards from several references shows that the biodried waste only meets RDF requirements for volatile content, chlorine, and sulfur. Among the variations tested, the organic waste mixed with straw (Reactor 2) yielded the most optimal results compared to other variations, with a moisture content of 54.33% (wet basis) and a calorific value of 5.4 MJ/kg.
At the end of 2020, Talang Gulo Landfill Site 1 in Jambi City was officially closed due to overcapacity. Municipal solid waste disposal has shifted to the Talang Gulo site 2 with a life expectancy of ± 90 years based on the design plan. However, this is difficult to realize because segregation and composting are not optimal, so more than 90% of the waste transported to the final processing site (TPA) is in a landfill. Thus, landfill mining was executed to utilize excavated landfill waste as a material and energy. It was carried out at depths of 3, 5, and 7 meters with an estimated sample age of > 9 years. The mixed landfill samples contained 55.6–66.2% moisture content, 50.3–80.6% volatile content, 19.4–49.7% ash content, 2.6–4.2% fixed carbon, and 3.5–5.7 MJ/kg calorific value. Furthermore, the landfill waste was dried using the biodrying method, combining fresh and landfill waste in the pile composition. The ratio of landfill waste to the addition of fresh waste is 1:0 (control pile), 1:1, 1:2, 1:3, and 1:4. The drying method reduced moisture content of 9–29.1% with a lower calorific value of 5–6.8 MJ/kg. Based on statistical analysis, it is known that waste ratio has a significant effect on moisture content. Based on the weighting results, the optimum mixture ratio is 1:1 (pile 2).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.