Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aimed to analyze the available amount of water in the Dragaçina River to meet the different water needs in the Municipality of Suhareka. The water problems in this city are more pronounced, especially in the vegetation period of July–September, where the area is significantly affected by drought. The Dragacina River carries about 10 hm3 of water per year, and affected neither by urbanism nor massive deforestation of the basin. However, there are no multi-year measurements of inflows for this river, whether they are average, maximum or minimum ones. Therefore, the study is based on several multi-annual monthly rainfall measurements and some characteristics of the Dragaçina River Basin. Knowing the average annual flow coefficient η = Peff / Pbruto it is possible to convert these precipitations to Peff [mm] flow and then to monthly flow. The inputs for other years from 1983/84 onwards are obtained by simulating time series. Then, for such inflows, the probability distribution functions of small waters are assigned and the usable volume balance is carried out. Assuming an average annual withdrawal from the reservoir QAmin mes. = 0.63 × Qmes. which should be constant throughout the years, then the length of the critical period will be 0.13 years or approximately 48 days, for PH = 95%. Starting from the initial acquired volume of 1 hm3 it is possible to achieve 95% < PH < 99%. Therefore, it follows from this analysis that this river can provide a significant amount of water for the needs of the Municipality of Suhareka.
EN
For ungauged rivers, when there are no hydrological measurements and there is a lack of data on perennial flow rates, the latter one to be determined based on other hydrological data. The river Suhareka catchment represents a similar case. Since there is no data on Suhareka’s flow rates, the authors of this study aimed for the flow rate determination based on rainfall measurements. From the available data on annual precipitation (monthly sums) provided by the Kosovo Hydrometeorological Institute for the Suhareka hydrometric station, the observed monthly rainfall data for 30 years were analysed. Those gaps were initially filled by connecting the hydrometric station in Suhareka with those of Prishtina, Prizren and Ferizaj, and as a result a fairly good fit was ensured. Moreover, the intensity-duration-frequency curves were formed using the expression of Sokolovsky, as a mathematical model of the dependence I (T, P). For a transformation of rainfall into flow, the American method SCS was used. As a result, the equation for the Suhareka River basin was derived, which enabled the determination of maximum inflows, for different return periods. The results obtained through this paper, indicates that even for ungauged river basins the peak flows can be determined from available rainfall data.
EN
One of the most challenging issues regarding water quality control is the lack of adequate measurements and lack of data on many water quality constituents. Since water quality is highly variable during time and space, traditional grab sampling often misses extreme events and the result isn’t always a representative one. This paper evaluated the usefulness of turbidity measurement as a surrogate for the determination of the Total Phosphorus. Instead of in-situ sensors for real time turbidity measurements, another approach was taken during this investigation. The suitability of using turbidity as a surrogate for TP was investigated using prepared subsamples, each with different concentration of water quality constituents. Laboratory results, with the use of the linear regression techniques, enabled the development of the model that relates the total phosphorus to turbidity. The linear regression equation developed, TP = 0.3942TTU – 3.4279 shows that there is a very good prediction of the total phosphorus based on the turbidity measurement, with the correlation coefficient as good as R2 = 0.8782 and p-value less than 0.5. Even though the equation is site specific, and more investigation is needed, we conclude that it can be used in similar situations, when there is a lack of monitoring programs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.