In the present study, stir casting process was employed to incorporate a blend mixture of ilmenite (FeTiO3) and boron carbide (B4C) particles in the matrix of LM13 base alloy. The study demonstrated the effect of individual reinforcement, weight percentage and mixing proportion on wear behaviour of LM13 alloy for brake rotor applications. Composite with 15 wt.% of reinforcement having 75% proportion of boron carbide (15BI-31 composite) shows change in silicon morphology to globular and highest refinement of silicon structure. Highest wear resistance, highest hardness, lowest coefficient of thermal expansion and lowest friction coefficient values were obtained for 15BI-31 composites. The addition of ilmenite particles enhances the properties of BI composites by making the strong interfacial bonding and enhancing the oxidation rate of sliding surface. However, the increase in dislocation density by boron carbide particles helps in enhancing the hardness of composites which contributes in providing the stability to mechanical mixed layer. The comparable wear property (17% higher wear rate), low processing cost and low material cost of 15BI-31 composite make it a suitable material for brake rotor applications. The predominant wear mechanism for composites was observed to be abrasive wear and delamination wear. However, the severity of wear mechanism changes as the applied load increases.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This research work is the first successful trial in which silanized nanoclay and compatibilized Inviya fibers were reinforced in epoxy-based glass fiber reinforced composites (EGFCs) resulting in significant improvements in impact strength without degrading tensile properties. Vacuum assisted resin infusion moulding (VARIM) technique was used for processing of multi-scale filler reinforced EGFCs. Inviya fibers were used, because of their high ‘elastic recovery’ and ‘stretchability’ (five times the original length) due to alternative flexible and rigid molecular structure. Nanoclay and Inviya fibers were subjected to compatibilization with different surface treatments. Compatibilization of fillers was confirmed through Fourier transform infrared spectroscopy (FTIR) and Field emission scanning electron microscopy-Energy-dispersive spectroscopy (FE-SEM/EDS) analysis. Nanoclay dispersion and morphology in EGFCs was ascertained through X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analysis. Reinforcement of compatibilized Inviya fibres (First Method: maleic anhydride grafting, and Second Method: combination of phosphoric acid treatment followed by silanization) enhanced the impact strength by 132% and 150%, respectively, over the reference composition. FE-SEM micrographs of fracture surface of impact test specimens were utilized to identify the mechanisms causing improvement in impact behaviour.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Automobile industry is continuously striving to obtain light body-in-white structures to meet tightened regulations on flue-gas emissions/crash-testing parameters. ‘Advanced high strength steels (AHSS)’ find increased applications in the automotive industry because of improved crashworthiness/formability at reasonably low costs. AHSS category mainly includes transformation induced plasticity (TRIP) steels, twinning induced plasticity (TWIP) steels, dual phase (DP) steels, complex-phase (CP) steels, and quenching-partitioning (Q&P) steels. AHSSs provide superior strength-ductility combination than conventional high-strength steels by virtue of their multi-phase microstructures. Mechanical properties of AHSSs are greatly influenced by processing routes/derived microstructures. Furthermore, mechanical properties/tensile deformation behavior are also strain rate dependent. During an automobile crash, deformation occurs at strain rates which are exceedingly higher than quasi-static conditions. So, investigation of AHSS properties under both quasi-static as well as high strain rates conditions is important to check applicability for superior crash-resistance. The present work critically reviews details of processing routes, room temperature microstructures, mechanical properties, and finally strain rate dependence of tensile deformation behaviour of AHSSs. Finally, main gaps in existing literature/scope for future research with regards to high strain rate deformation dependent properties of this steel category are presented.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present work investigates the microstructural changes in an AISI 304L austenitic stainless steel during the early stages of tensile deformation (where austenite does not transform to strain induced martensite). In situ tensile experiments were conducted to record grain orientation changes and slip activation in the steel. The effect of grain size, neighboring grains, and annealing twins on orientation changes during deformation was investigated. Results showed that at a given strain level, grains lying in relatively softer regions and possessing higher Schmid factor values accommodated the plastic deformation initially and showed orientation changes toward the stable orientation. The relatively larger grains changed their orientations only at higher strain levels. Grain orientation changes were also influenced by size and crystallographic orientation of neighboring grains. For grains containing annealing twins, the orientation changes of twin and its grain were in different directions during deformation at a given strain level. Further, grains containing multiple twins showed delayed deformation. The study of tensile deformation behavior in this respect opens up new routes to alter and hence enhance the mechanical properties of materials by engineering their microstructure.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Lüders band formation in steels is critical to surface finish during automobile panel manufacturing. This research reports on the problem of Lüders band formation in interstitial free high strength steel compositions (IFHS-steels). The study investigates the effect of chemical composition and processing parameters on the formation of Lüders bands in IFHS-steels. It correlates the problem of Lüders band formation with precipitation kinetics behaviour during the industrial processing of IFHS-steels. Four different compositions viz. Ti-stabilized, Ti-Nb stabilized, low Ti-low Nb, and high Ti-low Nb with high Al were investigated. Annealing parameters were similar to industrial practice followed for batch and continuous annealing lines in steel manufacturing plants. Stabilized IFHS-steel compositions possessing excess of stabilizing elements (Ti, Nb, etc.) for stabilization of interstitial elements (C, N) also showed the problem of Lüders band formation. The new type of IFHS composition containing high Al, investigated in this research, showed no Lüders band formation during batch annealing cycles along with adequate mechanical properties (YS: 190–202 MPa; Δr-value: 0.25). Thus, steel compositions with high Al content processed through batch annealing cycle offer a practical solution to the problem of Lüders band formation in IFHS-steels.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.