Building detection in Ashwa’iyyat is a fundamental yet challenging problem, mainly because it requires the correct recovery of building footprints from images with high-object density and scene complexity. A classification model was proposed to integrate spectral, height and textural features. It was developed for the automatic detection of the rectangular, irregular structure and quite small size buildings or buildings which are close to each other but not adjoined. It is intended to improve the precision with which buildings are classified using scikit learn Python libraries and QGIS. WorldView-2 and Spot-5 imagery were combined using three image fusion techniques. The Grey-Level Co-occurrence Matrix was applied to determine which attributes are important in detecting and extracting buildings. The Normalized Digital Surface Model was also generated with 0.5-m resolution. The results demonstrated that when textural features of colour images were introduced as classifier input, the overall accuracy was improved in most cases. The results show that the proposed model was more accurate and efficient than the state-of-the-art methods and can be used effectively to extract the boundaries of small size buildings. The use of a classifier ensample is recommended for the extraction of buildings.
The Marina area represents an official new gateway of entry to Egypt and the development of infrastructure is proceeding rapidly in this region. The objective of this research is to obtain building data by means of automated extraction from Pléiades satellite images. This is due to the need for efficient mapping and updating of geodatabases for urban planning and touristic development. It compares the performance of random forest algorithm to other classifiers like maximum likelihood, support vector machines, and backpropagation neural networks over the well-organized buildings which appeared in the satellite images. Images were subsequently classified into two classes: buildings and non-buildings. In addition, basic morphological operations such as opening and closing were used to enhance the smoothness and connectedness of the classified imagery. The overall accuracy for random forest, maximum likelihood, support vector machines, and backpropagation were 97%, 95%, 93% and 92% respectively. It was found that random forest was the best option, followed by maximum likelihood, while the least effective was the backpropagation neural network. The completeness and correctness of the detected buildings were evaluated. Experiments confirmed that the four classification methods can effectively and accurately detect 100% of buildings from very high-resolution images. It is encouraged to use machine learning algorithms for object detection and extraction from very high-resolution images.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.