Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Przeżywalność bakterii w wodach geotermalnych
PL
W przedstawionej pracy badano przeżywalność bakterii z rodzajów Escherichia coli, Staphylococcus aureus i Pseudomonas aeruginosa w wodach termalnych. Próby wody były pobierane z ujęć w Ciechocinku i Grudziądzu. Na początku eksperymentu badane próby wody były inokulowane komórkami bakterii i liczebność komórek bakteryjnych wynosiła 150 x 103 x cm3. Badania były prowadzone przez 28 dni. Uzyskane wyniki wskazują, że przeżywalność badanych bakterii w wodzie pochodzącej z Grudziądza jest mniejsza niż w wodzie z Ciechocinka. Tym niemniej, w obu tych wodach, wprowadzenie dodatkowej puli materii organicznej znacząco wpływa na przeżywalność bakterii.
EN
In this work we studied survivorship of bacteria from genus Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa in hydrothermal waters. The samples of hydrothermal water were taken from sources in Ciechocinek and Grudziądz. At the beginning of the experiment the smplaes of waters were inoculated by bacteria and the number of bacterial cells in water was 150 x 103per cm3. The investigations were conducted during 28 days. Our results show that in water from Grudziądz, generally the survivorship of examined bacteria is shorter then in water from Ciechocinek. But in both this water samples added organic matter have significantly impact for time of survivirship of bacteria.
EN
Changes in phylogenetic groups of methanogenic microorganisms during methane fermentation have been studied. Phylogenetic groups of methanogens were quantified and visualized by hybridization of oligonucleotide probes complementary to rRNA of the major phylogenetic groups. At the beginning of fermentation, Eubacteria are the main group and the count of Archaea constitutes only an insignificant percentage of the population of microorganisms. During the process of fermentation, a very significant increase in methanogenic microorganisms was recorded after 70 days of the process in progress. It is reflected in the quantity and the composition of released biogas.
PL
Celem badań była ocena skuteczności oczyszczania ścieków bytowo-gospodarczych w małej przydomowej oczyszczalni wierzbowej oraz doczyszczania ścieków w gminnej, mechaniczno-biologicznej oczyszczalni z filtrem piaskowo-trzcinowym. Próbki ścieków do badań pobierano w okresie od maja do grudnia 2007 r. Liczebność bakterii heterotroficznych zdolnych do wzrostu w temperaturze 22°C (jtk 22°C) i 37°C (jtk 37°C) oznaczano metodą płytek lanych zgodnie z normą PN-ISO 6222. Liczebność bakterii z grupy coli (TC) oraz bakterii termotolerancyjnych (fekalnych) z grupy coli (FC) oznaczano metodą fermentacyjną probówkową zgodnie z PN-75/C-04615/05 i PN-77/C-04615/07. Liczebność paciorkowców kałowych [FS] badano metodą filtrów membranowych zgodnie z PN-82/C-04615/25 na podłożu Slanetza-Bertleya. Wykazano znaczne zmniejszenie liczebności większości badanych grup bakterii w trakcie oczyszczania ścieków metodą hydrobotaniczną. W najmniejszym stopniu zmniejszyła się liczebność paciorkowców kałowych.
EN
One of the ways to solve the sewage treatment problems in Polish rural areas is the use of unconventional sewage treatment systems based on ponds with macrophytes or on ground filters with hydrophytes. Their function follows the model of natural wetlands. They are featured by many merits and can be used to treat sewage from single farms, small villages, land estates or agro-tourist centres. Beside abiotic processes such as sedimentation and filtration, sorption of chemical pollutants in the medium and photolytic reactions, an important role in sewage treatment play biological factors - vascular flora and microorganisms in a given object. The aim of this study was to assess the effect of sewage treatment in a small home willow treatment plant and treated sewage polishing in the communal mechanical-biological treatment plant with sand-reed filter. The sewage for analyses was sampled from May to December 2007. The number of heterotrophic bacteria capable of growing at temperatures of 22°C (cfu 22°C) and 37°C (cfu 37°C) was estimated by cast plate method according to Polish standard PN-ISO 6222. The numbers of coliform bacteria [TC] and thermo-tolerant (faecal) coliform bacteria [FC] were estimated by means of fermentation test-tube method according to Polish standards PN-75/C-04615/05 and PN-77/C-04615/07. The number of faecal streptococci (FS) was determined by the membrane filter method according to Polish standard PN-82/C-04615/25 with the use of Slanetz-Bertley medium. Considerable reduction of the majority of investigated bacteria groups was found during hydrophyte sewage treatment. The lowest reduction was observed in the number of faecal streptococci.
4
Content available remote Degradation of chitin in natural environment : role of Actinomycetes
EN
The actinomycetes in water samples and bottom sediments of lowland, eutrophic lake as well as in soil (farmland, sandy) of the lake basin were studied. Chitin-degrading actinomycetes were isolated (with a plate technique) from each habitat; subsequently, their chitinolytic activity (with the fluorometric method) was determined in relation to temperature (10-50[degree]C) and the physical type of chitinous substance (colloidal chitin, chitin powder, and shrimp shells). This study demonstrated that actinomycetes were the most abundant in soil samples (average of 18x10[^3] CFU g[^-1] in farmland soil, 9x10[^3] CFU g[^-1] in sandy soil), and the least abundant in water samples (average of 2.7x10[^1] CFU mL[^-1] in lake water at neutral pH, 0.6x10[^1] CFU mL[^-1] in lake water with alkaline pH). The highest percentage of chitinolytic actinomycetes was observed in soil (average of 80% in sandy soil and 85% in farmland soil). Chitinolytic actinomycetes also made up a large fraction of total actinomycetes in water samples (average of 73%). In silt and sandy sediments, percentages of chitinolytic actinomycetes equaled 23 and 15%, respectively. Actinomycetes collected in soil were characterized by the highest activity (average of 14 nmol MUF mg[^-1] of protein h[^-1] in farmland soil, 8.5 nmol MUF mg[^-1] protein h[^-1] in sandy soil). The lowest activity was observed among benthic actinomycetes (average of 5.4 nmol MUF mg[^-1] of protein h[^-1] in silt, 0.65 nmol MUF mg[^-1] protein h[^-1] in sandy sediments). The impact of temperature and the type of chitinous substrate on the activity of chitinases produced by actinomycetes demonstrated that their activity peaked at 40[degree]C and in the presence of colloidal chitin. Observed differences in actinomycetales number and activity in the lake and the soil may be explained by higher accumulation of chitin substances in the soil. This polymer allows microorganisms to continually synthesize chitinolytic enzymes and take active part in that compound decomposition.
5
Content available remote Occurrence of bacteria Salmonella sp. in sewage sludge used in agriculture
EN
Sewage sludge is characterized by good fertilizer properties and contains significant amount of nutrients and organic matter subject to humification in soil. Therefore, sludge has been effectively spread in order to recultivate degraded areas or to replace humus material in green areas of towns, or to lay lawns by the owners of private houses. The sludge used for agricultural purposes has to meet certain chemical and biological criteria. This study examined the occurrence frequency of bacteria Salmonella in sewage sludge from eight wastewater treatment plants between 1999 and 2007. The results demonstrated that the occurrence frequency of bacteria Salmonella in the sewage sludge strongly depended on the technology used in the treatment plant.
EN
This study presents results of research on occurrence of chitinolytic bacteria and fungi in water, bottom sediments, and watershed soil of an eutrophic lake and on their ability to use the crustacean skeletons (shrimp waste) as a respiration substrate. It was found that the respiration rate of bacteria and fungi during decomposition of chitin varied in different environments. The participation of chitinolytic microorganisms in water (13%) and soil (18%) was greater than in bottom sediments (5%). The respiration activity in the presence of all parts of shrimp waste and shrimp exoskeletons observed in chitinolytic bacteria was higher than that of fungi. But fungi demonstrated the highest metabolic activity in the presence of the shrimp head sections. The highest respiration activity was observed in planktonic and soil bacteria, while the lowest, in benthic strains. The chitinolytic bacteria used well all examined respiration substrates (all parts of shrimp waste - 671 mg O[2] g[^-1] protein in 5 days, the shrimp head sections - 851 mg O[2] g[^-1] protein in 5 days and shrimp exoskeletons - 490 mg O[2] g[^-1] protein in 5 days). No significant differences in respiration activity were observed in chitinolytic fungi isolated from water, bottom sediments and soil. All of fungal strains demonstrated the highest metabolic activity in the presence of the shrimp head sections (average 1083 mg O[2] g[^-1] protein in 5 days). Shrimp exoskeletons were oxidized the least efficiently (average 160 mg O[2] g[^-1] protein in 5 days). Certain strains were not using them at all.
7
Content available remote Chitinolytic activity of bacteria and fungi isolated from shrimp exoskeletons
EN
Microbiological analysis of shrimp exoskeletons demonstrated considerable differences in abundance of heterotrophic bacteria and fungi. The number of heterotrophic bacteria was greater by two orders of magnitude than that of fungi. The survey, however, did not reveal significant differences in abundances of bacteria and fungi in samples coWected during different months of the survey. The percent contribution of chitinolytic fungi in shrimp exoskeletons was greater than that of bacteria that hydrolyze chitin. The activity of chitinase bacteria was always higher than fungi. Chitinases produced by bacteria demonstrated the highest level of activity at 40°C and pH = 8. In contrast, fungal chitinases showed the highest activity at 50°C and pH = 5.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.