Bioprocesses which are involved in producing different pharmaceutical products may conveniently be classified according to the mode chosen for the process: either batch, fed-batch or continuous. From the control engineer's viewpoint they are fed-batch processes, which present the greatest challenge to get a pure product with a high concentration. Complicated dynamics, nonlinearity and non-stationarity make controlling them a very delicate task. pH control of bioreactors has been an interesting problem from both implementation and controller design points of view. This is particularly true if the complex microbial interactions yield significant nonlinear behavior. When this occurs, conventional control strategies may not succeed and more advanced strategies need to be suggested. This paper discusses model predictive control (MPC) based on a detailed unstructured model for penicillin production in a fed-batch fermentor. The approach used here is to use quadratic cost function for pH regulation, while taking into account control signal fluctuations in the optimization block. The result of applying the obtained controller and also its sensitivity to disturbance have been displayed and compared with the results of an auto-tuned PID controller used in previous works. The merit of this method is its low computational cost of solving the optimization problem, while leading to a closed form controller as well.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.