Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Establishing a chronology of events is a critical step in reconstructing the palaeoclimate and it is important for all types of environmental records, including speleothems. Here, we analysed a unique series of flowstones deposited between 3.2 Ma (marine isotope stage (MIS) Km3) and 0.08 Ma (MIS 5). The studied flowstones are located in a classic karstic environment, the Račiška Pečina Cave in south-western Slovenia. Further, a detailed chronology of events was constructed based on oxygen isotope stratigraphy (OIS), combined with magnetostratigraphy and U-series dating. Two curves were selected as reference records where the LR04 record was used as the global curve and a Mediterranean record was used as the regional curve. The Račiška Pečina profile was divided into two segments separated by a principal disconformity. The lower segment correlated better with the regional Mediterranean curve, while the upper segment was with the global LR04 curve. These findings suggest that the main factors controlling environmental conditions in the cave area changed between 3.2 and 0.8 million years ago.
2
Content available remote Estimation of the durations of breaks in deposition – Speleothem case study
EN
Speleothems provide one of the most continuous terrestrial archives. However, due to changing conditions in temperature/humidity or the chemistry of percolating water, sedimentation breaks (hiatuses) and erosional events are possible and are commonly recorded in speleothems. Sedimentation breaks with durations longer than the resolution of the studied record should be considered in potential speleothem age-depth models. The most classic and reliable solution to the problem is the independent construction of age-depth models for the parts of speleothems separated by the hiatuses. However, in some cases, it is not possible to obtain a sufficient number of dating results for reliable age-depth model estimation. In such cases, the problem can be solved by the application of other sources of chronological information. Here, based on a few speleothem examples, an alternative approach – oxygen isotopic stratigraphy – is used to estimate the chronology for the parts of speleothems where there is not enough chronological information for classic age-depth models. As a result, the deposition break duration can be estimated.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.