Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.
PL
Celem niniejszego artykułu było określenie jaki faktyczny wpływ na wielkość sezonowych strat ciepła przez obudowę termiczną budynku miało kiedyś i może mieć obecnie zachowanie zwartej bryły budynku. W artykule przybliżono pojęcia izolacyjności termicznej i współczynnika przenikania ciepła przegród budowlanych. Przedstawiono tu także krajowe wymogi dotyczące izolacyjności termicznej przegród budowlanych, jakie obowiązywały w minionych dekadach, jakie obowiązują obecnie i te, które będą stawiane wobec przegród budowlanych w najbliższych latach. Wyjaśniono także, czym dla budynku jest współczynnik kształtu A/V i powód, dla którego kształt bryły budynku może wpływać na jego charakterystykę energetyczną. Zaprezentowano wnioski sformułowane przez innych autorów, których prace dotyczą optymalizacji kształtu bryły budynku pod względem cieplnym. Przytoczono również krytyczne opinie dotyczące wpływu takiej optymalizacji kształtu na atrakcyjność architektury obiektów budowlanych. Metodę badawczą oparto na obliczeniach sezonowych strat ciepła w budynkach o różnych stosunkach powierzchni przegród zewnętrznych do kubatury budynku A/V. Obliczenia przeprowadzono dla 27 modeli budynków o identycznej powierzchni wewnętrznej i kubaturze wewnętrznej, lecz różniących się proporcjami wymiarów i liczbą kondygnacji. W obliczeniach wzięto pod uwagę dziewięć zestawów wartości współczynników przenikania ciepła przegród zewnętrznych, odpowiadających dawnym, aktualnym i przyszłym wymogom krajowym. Różnice w wartościach sezonowych strat ciepła uzyskane dla każdego z zestawów zinterpretowano jako potencjalne oszczędności energetyczne, wynikające z zachowania zwartej bryły budynku i ograniczenia wartości współczynnika kształtu A/V. Wyniki zestawiono i na ich podstawie sformułowano stosowne wnioski.
EN
The purpose of this paper was to determine former, current and future impact of building’s shape compactness on its heat losses. The article explains such terms as thermal insulation and heat transfer coefficient of building barrier’s, as well as the history of Polish national regulations concerning that subject. It was also explained, what building shape factor is, and what may be its potential impact on building’s efficient Energy use. The paper presented conclusions of numerous research on building shape optimization, including critical opinions about architectural effects of the process. The scientific method was based on calculations of seasonal heat losses in multiple buildings varying with their volume to Surface area ratio. Calculations were conducted for twenty seven buildings of the same floor Surface area and interior volume, but of different proportions and number of storeys. Calculations considered nine groups of heat transfer coefficient values for building barriers, that corresponded to former, current and future standards, established by polish regulations Differences in acquired values of seasonal heat loses were interpreted as potential energy savings to be obtained by applying thermal envelopes with low shape factors. Presented results have been compared and basing on them, final conclusions were formed.
EN
The problem of slope stability is one of the most difficult issues, which constitutes the object of interest of engineering geology and geotechnics. The impact of vegetation, well developed bush root system in particular, on the improvement of slope and escarpment stability, is one of the often-omitted aspects in engineering practice. Vegetation may perform a double function within a geological medium: - strengthening – by means of soil reinforcement and anchoring, binding of grains, which improves strength parameters, reduction of pore pressure and groundwater table by means of water interception; - weakening – by means of the impact of specific gravity of vegetation on the subsoil, the impact of wind on a tree, which may lead to its inclination and creation of voids in the soil, moisture changes leading to shrinkage and loosening of the ground (Najder 2003, Greenwood et. al. 2004). Plant roots demonstrate much tensile strength. They increase the ground’s cohesion owing to their friction and adhesive properties. Changes of these parameters depend on the spatial reach and the type of root system. The following types may be distinguished: intensive (concentrated) and extensive (diffused) (Reubens et al. 2007). A given root type impact zone depends on the location of the potential slip surface and the kind of mass movement (Koda et al. 2010). A landslide in Pietrzejowice, located on the Proszowice Plateau, at a distance of approximately 25 km from Cracow, is the object of the research (Kondracki 2010). Landslide movement was initiated on 14 May 2010. At night on 3–4 June further development of the landslide occurred, leading to the damage of two residential buildings. Surface deformations occurred in the area of approximately 3 ha. A geological medium was subdivided into five geotechnical layers: silty clay with different consistency and Miocene clay (Jaskólski et al. 2012). Numerical analyses of the slope stability were carried out in the FLAC 7.0 programme, whose computational algorithm is based on the finite difference method. Two options of the root system development – concentrated and diffused – were adopted in the model. Numerical simulations were carried out as per the scheme (Pilecki et al. 2014): 1) Static analysis of the data set for variable soil and water conditions with Duncan and Wright method (Kaczmarek & Popielski 2015). 2) Elaboration of the set of input data. 3) Elaboration of the physical model. 4) Elaboration of design model along with adopted initial and design conditions. The following options were considered: - variant I – natural slope condition, - variant II – condition after water accumulation, variant III – development of concentrated root system, - variant IV – development of diffused root system, - variant V – water accumulation of option III, - variant VI – water accumulation of option IV. 5) Calculation of the results and their verification. 6) Analysis of the probability of occurrence of mass movements for the adopted design options. Statistical analysis of the set of input data and results of numerical simulations allowed determining the impact of the root system on changes of the safety factor with the soil variable and water conditions. The route of the slide surface and determination of the probability of the loss of stability, with local or global nature, are also important pieces of information. The results of numerical simulations indicate an increased value of safety factor for the slope with extensive root system. The results are of a reconnaissance nature and they describe the impact of the root system on stability in a general manner.
4
Content available remote Thermal properties of transparent barrier modified with organic PCMs
EN
Renewable energy sources are increasingly often applied in civil engineering as a mean to reduce buildings energy demand for heating. One of the ways to reduce HVAC energy demand is to limit heat transfer and excessive solar gain through building's glazed barriers. Preliminary results of the research conducted on organic PCM-modified transparent barrier are presented in this paper. Multiple publications concerning PCMs application in structural materials have recently appeared. Most of them are focused on modification of structure of non-transparent sections of buildings' envelope. Augmenting a glazed barrier with PCMs increases its heat capacity and thermal resistance. The most important feature of the assembly is the thermal buffer, a product of PCM's considerable value of specific latent heat. Research were conducted on a triple-pane transparent rectangular barrier, that constituted one of the faces of cubic chamber. Internal volume of the chamber was 1m3. The applied PCM was a mixture of saturated and non-saturated hydrocarbons. The described assembly was subjected to temperature and radiation that occur in Poland during winter. Glazing temperature, melted/total PCM ratio were measured, as well as energy demand for keeping internal temperature at constant level. Measurements were made in steady states, for various PCM layer thickness. The influence of the modification on energy demand was determined, along with the most effective and rational thickness of PCM layer to be applied. Conducted research enabled to develop a basis for further investigation of PCMs application in civil engineering.
PL
Obecnie, aby obniżyć koszty związane z utrzymaniem temperatury powietrza w budynku, coraz częściej wykorzystuje się odnawialne źródła energii. Jednym ze sposobów obniżenia kosztów utrzymania budynku jest ograniczenie strat ciepła oraz nadmiernego przegrzania pomieszczeń przez okna. W niniejszym artykule przedstawione zostały wstępne wyniki badań sprawdzających zasadność modyfikowania przeszkleń PCM-ami pochodzenia organicznego W przeciągu kilku ostatnich lat można zaobserwować wzrost ilości prac naukowych opisujących możliwości modyfikowania materiałów budowlanych PCM-ami. Zdecydowana większość wyżej wspomnianych prac odnosi się do modyfikacji stropów, dachów i ścian wykonanych z różnych materiałów. Modyfikacja przeszkleń PCM-ami pozwala na zwiększenie bezwładności termicznej przegrody, zwiększenie oporu cieplnego szyby oraz utworzenie buforu cieplnego związanego z ciepłem przemiany fazowej PCM-u. Badaniom zostało poddane przeszklenie dwukomorowe o wymiarach 80,5cm x 80,5 cm, będące jedną ze ścian sześciennej komory. Wewnętrzna kubatura komory wynosi 1m3. Materiałem zmiennofazowym użytym do badań jest mieszanina węglowodorów nasyconych i nienasyconych o temperaturze przemiany fazowej 38-41ºC oraz cieple przemiany fazowej 135 kJ/kg. Opisaną wyżej komorę wraz z PCM-em poddano działaniu temperatury i promieniowania, odpowiadającym wartościom rzeczywistym w Polsce w sezonie zimowym. Dla zadanych warunków mierzono stopień [%] zmiany fazy PCM-u, temperaturę przeszklenia oraz ilości energii potrzebnej do utrzymania stałej temperatury wewnątrz komory. Wyniki zostały odczytane dla stałych warunków (temperatury i natężenia promieniowania) oraz różnych grubości PCM-u. Na podstawie przeprowadzonych badań określono ilość zużytej energii potrzebnej do utrzymania określonej temperatury w komorze. Dodatkowo określono grubość PCM-u, która pozwoli na jego racjonalne wykorzystanie. Przeprowadzone badania stanowią podstawę do prowadzenia dalszych modyfikacji cech chemicznych i fizycznych PCM-ów wykorzystywanych w budownictwie.
5
Content available remote Ocena efektywności izolacyjno-akumulacyjnej przegród zewnętrznych
PL
Celem niniejszego opracowania jest określenie wpływu izolacyjności termicznej i pojemności cieplnej przegród zewnętrznych budynku na panujące w nim warunki termiczne. W artykule przybliżono pojęcia izolacyjności i akumulacyjności termicznej w kontekście aktualnych badań naukowych i obowiązujących wymogów krajowych. Aktualne polskie przepisy stawiają wobec przegród zewnętrznych wymagania dotyczące jedynie ich izolacyjności termicznej, podczas gdy, z zaprezentowanych badań naukowych wynika, że akumulacyjność termiczna przegród budowlanych jest często niedocenianym czynnikiem, który odpowiednio wykorzystany, może w zauważalnym stopniu obniżać energetyczne koszty całorocznego utrzymania budynku i wpływać pozytywnie na odczuwanie komfortu cieplnego przez jego użytkowników. Na podstawie analiz prowadzonych przez innych autorów. Określono także optymalną, dla klimatu Polski, lokalizację warstwy termoizolacyjnej w przegrodzie. Analizę tytułowego problemu, prowadzoną w dalszej części pracy oparto na sprawdzeniu i porównaniu odpowiedzi termicznych wewnętrznych powierzchni przegród zewnętrznych na relatywnie krótkotrwałe zmiany temperatury powietrza wewnętrznego i zewnętrznego. Wykorzystano w tym celu metodę różnic skończonych za pomocą której przeprowadzono symulacje dwóch niezależnych przypadków obciążeń termicznych , dla ścian o zróżnicowanej budowie. Wybrane wyniki przeprowadzonych symulacji zostały zaprezentowane w tekście. W ocenie warunków termicznych występujących w budynku podczas analizowanych zmian temperatur posłużono się, specjalnie w tym celu wprowadzonym, współczynnikiem efektywności izolacyjno-akumulacyjnej. Tak przeprowadzona analiza posłużyła sformułowaniu stosownych wniosków końcowych.
EN
The purpose of this work is to assess the impact of thermal insulation and heat capacity of building's envelope , on thermal conditions of the building's interior. The article describes thermal insulation and heat capacity referring to the results of present scientific research, as well as to current polish regulations in this matter.The obligatory regulations in Poland enforce only the maximal value of heat transfer coefficient of buildings' envelope, while presented research proves thermal capacity to be a factor, that could significantly reduce annual energy requirements of a building, as well as to positively influence thermal comfort of it's users. The optimal location of thermal insulating layer of external walls required in polish climate was identified, basing on other authors' research. The analysis of the titular problem was based on calculating and comparing thermal responses of internal surfaces of external walls, due to relatively short-term changes of thermal boundary conditions. The finite difference method was used to conduct simulations of two independent cases of dynamic thermal conditions. Multiple walls of various construction were subjected to mentioned thermal loads. Selected results of conducted simulations were presented in this paper. In order to evaluate obtained results, the insulating-accumulating coefficient of a wall was introduced. Presented analysis created a basis to form proper conclusions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.