Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A new localization approach to increase the navigational capabilities and object manipulation of autonomous mobile robots, based on an encoded infrared sheet of light beacon system, which provides position errors smaller than 0.02m is presented in this paper. To achieve this minimal position error, a resolution enhancement technique has been developed by utilising an inbuilt odometric/optical flow sensor information. This system respects strong low cost constraints by using an innovative assembly for the digitally encoded infrared transmitter. For better guidance of mobile robot vehicles, an online traffic signalling capability is also incorporated. Other added features are its less computational complexity and online localization capability all these without any estimation uncertainty. The constructional details, experimental results and computational methodologies of the system are also described.
EN
This paper introduces a simple and efficient method and its implementation in an FPGA for reducing the odometric localization errors caused by over count readings of an optical encoder based odometric system in a mobile robot due to wheel-slippage and terrain irregularities. The detection and correction is based on redundant encoder measurements. The method suggested relies on the fact that the wheel slippage or terrain irregularities cause more count readings from the encoder than what corresponds to the actual distance travelled by the vehicle. The standard quadrature technique is used to obtain four counts in each encoder period. In this work a three-wheeled mobile robot vehicle with one driving-steering wheel and two-fixed rear wheels in-axis, fitted with incremental optical encoders is considered. The CORDIC algorithm has been used for the computation of sine and cosine terms in the update equations. The results presented demonstrate the effectiveness of the technique.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.