Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A novel and excellent composite film was fabricated by simply casting cassava silk fibroin (CSF), chitosan quaternary ammonium salt (HACC), and graphene oxide (GO) in an aqueous solution. Scanning electron microscope images showed that when GO was dispersed in the composite films, the surface of CSF-based composite film became rough, and a wrinkled GO structure could be found. When the content of GO was 0.8%, the film displayed a higher change with respect to the breaking strength and elongation, respectively, up to 97.69 ± 3.69 and 79.11 ± 1.48 MPa, keeping good thermal properties because of the incorporation of GO and HACC. Furthermore, the novel CSF/HACC/GO composite film demonstrates a lower degradation rate, implying the improvement of the resistance to the enzyme solution. Especially in the film with 0.8 wt% GO, the residual mass arrived at 64.35 ± 1.1% of the primary mass after 21 days compared with the CSF/HACC film. This would reclaim the application of silk-based composite films in the biomaterial field.
EN
Warp-knitted spacer fabrics are generally used for sportswear, functional clothing, protective clothing, and other applications. This article studied the heat and mass transfer properties of polyester warp-knitted spacer fabrics from low thickness (2 mm) to high thickness (20 mm), from low mass (247.34 g/m2) to high mass (1,585.9 g/m2), and surface structure in plain or mesh construction. Water vapor permeability, air permeability, water absorption, and thermal insulation property were conducted to evaluate the spacer fabrics. The results revealed that with increasing volume density the water vapor permeability of spacer fabrics decreased, but the water absorption ratio increased. The water vapor permeability of fabrics increased when thickness decreased and volume density increased. It was further found that spacer fabrics with mesh worn nearby the skin and plain structure worn far from the skin could facilitate water vapor and air transmission. The difference of 8.82% for water vapor permeability and 14.19% for air permeability were found between testing mesh side up and down for the spacers (2.56 and 3.37 mm), respectively. Thermal insulation ratio was highly and significantly correlated with heat transfer coefficient at −0.958 and with thickness at 0.917. Thermal insulation ratio is highly and significantly correlated with air permeability at 0.941.
3
EN
This research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.
4
Content available remote Three-Dimensional Deformation of Warp-Knitted Spacer Fabrics Under Tensile Loading
EN
This paper puts forward a new method for measuring the three-dimensional deformation of warp-knitted spacer fabrics under tensile stress. The three-dimensional deformation mechanisms of warp-knitted spacer fabrics have been analyzed using stress–strain curves. Poisson’s ratio of the three-dimensional deformation has also been analyzed. The stress–strain curves obtained for tests in the warp-ward direction and weft-ward direction show a characteristic initial large deformation, followed by minimal-to-no deformation. The stress–strain curves obtained for tests in the thickness direction exhibit different characteristics due to the differences in stretch directions. In the weft-ward direction, the curve shows an approximate linear change with minimal strain. In the warp-wise direction, the curve shows a large stress with small strain, and subsequently, a small stress yielded a large strain. During the stretching process, the surface deformation perpendicular to the direction of tensile force is greater than the tensile deformation, and the deformation in the thickness direction is also minimal compared to that in the direction of the tensile deformation.
EN
In this study, woven fabrics with numerous electrostatic charges and desirable charge stability were investigated. A kind of core–shell monofilaments with different melting points between outer and inner layers were applied to wove the fabrics. These fabrics were hot coated through tourmaline particles as an charge enhancer at 122°C. Benefiting from the anions released by tourmaline particles and optimized content of the particles, the fabrics were endowed with surface potentials from −10 to −160 V and the voids content decreased from 45.4% to 41.2%, which contribute to the improvement in the filtration performance of the fabrics. A filtration mechanism was proposed while incremental surface charges with increasing tourmaline particles content have been confirmed through the noncontact measurement of electrostatic charges. The resultant fabrics exhibited a high filtration efficiency of 64.8% and superior long-term service performance. This study can provide a new application of the screen window for PM 2.5 governance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.