Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article proposes a nonlinear optimal control method for the dynamic model of a gas centrifugal compressor being actuated by a five-phase induction motor (5-phase IM). To achieve high torque and high power in the functioning of gas compressors, 5-phase IM appear to be advantageous in comparison to three-phase synchronous or asynchronous electric machines. The dynamic model of the integrated compression system, which comprises the gas compressor and the 5-phase IM, is first written in a nonlinear and multivariable state-space form. It is proven that the electrically driven gas-compression system is differentially flat. Next, this system is approximately linearised around a temporary operating point that is recomputed at each sampling interval. The linearisation is based on first-order Taylor series expansion and uses the computation of the Jacobian matrices of the state-space model of the integrated system. For the linearised state-space description of the compressor and 5-phase IM, a stabilising optimal (H-infinity) feedback controller is designed. This controller achieves a solution to the nonlinear optimal control problem of the compressor and 5-phase IM system under model uncertainty and external perturbations. The feedback gains of the controller are computed by solving an algebraic Riccati equation at each iteration of the control method. Lyapunov analysis is used to demonstrate global stability for the control loop. Additionally, the H-infinity Kalman filter is used as a robust state estimator, which allows for implementing sensorless control for the gas compression system.
EN
The effective elastic thickness of the lithosphere has an important role in constraining compositional structure, geothermal gradient and tectonic forces within the lithosphere and the thickness of this layer can be used to evaluate the earthquakes’ focal depth. Hence, assessment of the elastic thickness of the lithosphere by gravitational admittance method in Iran is the main objective of this paper. Although the global geopotential models estimated from the satellite missions and surface data can portray the Earth’s gravity field in high precision and resolution, there are some debates about using them for lithosphere investigations. We used both the terrestrial data which have been provided by NCC (National Cartographic Center of Iran) and BGI (Bureau Gravimetrique International), and the satellite-derived gravity and topography which are generated by EIGEN-GL04C and ETOPO5, respectively. Finally, it is concluded that signal content of the satellite-derived data is as rich as the terrestrial one and it can be used for the determination of the lithosphere bending.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.