Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper focuses on the development of a technological challenges of manufacturing the planar ceramic vacuum sensor based on the principles of hot-cathode ionization in the Bayard-Alpert configuration. The goal is to simplify the technological process by utilizing planar platinum structures with gold electrical paths instead of 3-dimensional structures. Various methods were tested, including the use of carbon-based SVM (Sacrifice Volume Materials) materials, but without success. Wet-etching using potassium hydroxide on Al2O3 substrates showed promise results. The findings highlight the challenges and progress made in developing the thermo-emittercomponent of the vacuum sensor.
EN
An useful electrochemical sensing approach was developed for norepinephrine (NE) detection based on semiconducting polymer (9-nonyl-2,7-di(selenophen-2-yl)- 9H-carbazole) and laccase modified platinum electrode (Pt). The miniature Pt biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with thin polymeric film. This sensing arrangement utilized the catalytic oxidation of NE to norepinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of enzyme – laccase. With the optimized conditions, the analytical performance demonstrated selectivity in a wide linear range (0.1–200x10-6 M) with a detection limit of 240 nM and a quantification limit of 365 nM. Moreover, the method was successfully applied for selective NE determination in the presence of interfering substances.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.