Purpose: The publication cancers one of problems related with safety in mining industry -the marking of escape routes in mining excavations. A review of literature on the subject and applicable legal regulations and standards, and authors’ study on the subject covering use of color-lighted signs created by them are presented. Design/methodology/approach: Literature studies were conducted: 1) to identify methods and findings in researches on marking of escape routes, described in scientific publications; 2) to define the requirements set out in legal acts and standards. The field study of the marking of escape routes was carried out in a training mine gallery in which there are conditions reflecting the real ones in underground mining excavations. The observations and questionnaire research were conducted during a training of a group of 20 professional mine rescuers. The following variables were set for the experiment: distance (5, 10 and 15 m), color (white, green, blue, red), shape (square, arrow). Findings: The article presents the results of pilot test in the field of the marking of escape routes in mine excavations. Different colors and shapes of the signs, and different distances of observation were taken into account. White color was found best to assure signs detectability but least appropriate if shape identification is required. Red and green colors were indicated as recommended if the shape identification is the evaluation criterion. Research limitations/implications: The research was dedicated to the underground mining industry, but can be adapted to other working sites where the evacuation takes place in similar conditions (lack of visibility and smoke). Practical implications: The research revealed among others that: 1) Polish regulations do not imply detailed rules as regards signage of escape routes in underground coal mines, which gives floor for development of new concepts and designs, 2) it is possible to propose color-lighted signs for effective marking escape routes in underground coal mines. Originality/value: The publication contains the original results of pilot test in the field of the marking of escape routes in mining excavations, and they can be addressed to persons managing mining plants and managers of mining supervision authorities.
Dynamic development of 3D printing technology contributes to its wide applicability. FDM (Fused Deposition Method) is the most known and popular 3D printing method due to its availability and affordability. It is also usable in design of technical objects – to verify design concepts with use of 3D printed prototypes. The prototypes are produced at lower cost and shorter time comparing to other manufacturing methods and might be used for a number of purposes depending on designed object’s features they reflect. In the article, usability of 3D printing method FDM for designing of technical objects is verified based on sample functional prototypes. Methodology applied to develop these prototypes and their stand tests are covered. General conclusion is that 3D printed prototypes manufactured with FDM method proved to be useful for verifying new concepts within design processes carried out in KOMAG.
W artykule zawarto analizę wyników badań ankietowych przeprowadzonych w kopalniach JSW S.A. oraz w kopalni Premogovnik Velenje, dotyczących komfortu użytkowania kolejek podwieszonych. Przedstawiono także wyniki analizy ergonomicznej typowego wozu do przewozu ludzi w górniczym transporcie pomocniczym.
EN
The article contains an analysis of the results of surveys conducted in the JSW S.A. mines. and at the Premogovnik Velenje mine. The study concerned comfort of use of suspended monorails. Results of ergonomic analysis of a typical car for transporting people in mining auxiliary transport are also presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.