Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–x Al12Crx+4(x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.
EN
Purpose: In this study, heat capacity and thermal conductivity of nanocomposites formed by high density polyethylene (HDPE) matrix and expanded graphite (EG) conductive filling material were investigated. Design/methodology/approach: Nanocomposites containing up to 20 weight percent of expanded graphite filler material were prepared by mixing them in a Brabender Plasticorder. Two grades of expanded graphite fillers were used namely expanded graphite with 5 ěm (EG5) and 50 ěm (EG50) in diameter. Heat capacity and thermal conductivity of pure HDPE and the nanocomposites were measured using differential scanning calorimetry (DSC). Findings: A substantial increase in thermal conductivity was observed with the addition of expanded graphite to HDPE. Thermal conductivity increased from 0.442 W/m.K for pure HDPE to 0.938 W/m.K for nanocomposites containing 7% by weight of expended graphite. Heat capacity increases with the increase in temperature for both pure HDPE and the nanocomposites filled with expanded graphite and no appreciable difference in the values of heat capacity were detected due to particle size. Heat capacity decreased with increasing graphite particle content for both particle size, following the low of mixtures. Practical implications: Layers of expanded graphite have become of intense interest as fillers in polymeric nanocomposites. Upon mixing the expanded graphite intercalates and exfoliates into nanometer thickness sheets due to their sheet-like structure and week bonds normal to the graphite sheets. That way they have very big surface area and high aspect ratio (200.1500) what results in a formation of percolating network at very low filler content. The nanoparticles usage results in significant improvement in thermal, mechanical, and electrical properties of polymers even with very low loading levels compared with microparticles. Originality/value: To see the effect of conducting fillers on thermal conductivity and heat capacity two different sizes of expanded graphite were used.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.