Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Human errors in maritime operations are closely linked to seafarers' mental workload; however, traditional assessment methods lack real-time neurocognitive resolution. This study introduces a novel psychophysiological framework that integrates electroencephalography (EEG) analysis with deep learning to objectively quantify seafarers' mental workload during onboard operations. A high-fidelity bridge simulator was utilized to generate critical maritime scenarios, including ship encounters, narrow channel navigation, poor visibility, and emergency responses. High-density EEG signals were analyzed to extract spectral features (Gamma, Beta, Alpha, Theta, Delta). A hybrid Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) model was proposed to classify workload states of seafarers, combining Convolutional Neural Network (CNN)-extracted frequency patterns with Bidirectional Long Short-Term Memory (Bi-LSTM)-captured temporal dynamics, which achieves 96% accuracy. Furthermore, SHAP interpretability analysis indicated that Theta and Alpha frequencies are key indicators in distinguishing between high and low workloads for seafarers. These results provide a quantitative tool for cognitive assessment of seafarers in maritime training and serve as a guideline for workload allocation in ship bridge teams for shipping companies and maritime authorities.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.