Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Developing a computational method for recognizing preterm delivery is important for timely diagnosis and treatment of preterm delivery. The main aim of this study was to evaluate electrohysterogram (EHG) signals recorded at different gestational weeks for recognizing the preterm delivery using random forest (RF). EHG signals from 300 pregnant women were divided into two groups depending on when the signals were recorded: i) preterm and term delivery with EHG recorded before the 26th week of gestation (denoted by PE and TE group), and ii) preterm and term delivery with EHG recorded during or after the 26th week of gestation (denoted by PL and TL group). 31 linear features and nonlinear features were derived from each EHG signal, and then compared comprehensively within PE and TE group, and PL and TL group. After employing the adaptive synthetic sampling approach and six-fold cross-validation, the accuracy (ACC), sensitivity, specificity and area under the curve (AUC) were applied to evaluate RF classification. For PL and TL group, RF achieved the ACC of 0.93, sensitivity of 0.89, specificity of 0.97, and AUC of 0.80. Similarly, their corresponding values were 0.92, 0.88, 0.96 and 0.88 for PE and TE group, indicating that RF could be used to recognize preterm delivery effectively with EHG signals recorded before the 26th week of gestation.
EN
The aims of this study were to apply decision tree to classify uterine activities (contractions and non-contractions) using the waveform characteristics derived from different channels of electrohysterogram (EHG) signals and then rank the importance of these characteristics. Both the tocodynamometer (TOCO) and 8-channel EHG signals were simultaneously recorded from 34 healthy pregnant women within 24 h before delivery. After preprocessing of EHG signals, EHG segments corresponding to the uterine contractions and non-contractions were manually extracted from both original and normalized EHG signals according to the TOCO signals and the human marks. 24 waveform characteristics of the EHG segments were derived separately from each channel to train the decision tree and classify the uterine activities. The results showed the Power and sample entropy (SamEn) extracted from the unnormalized EHG segments played the most important roles in recognizing uterine activities. In addition, the EHG signal characteristics from channel 1 produced better classification results (AUC = 0.75, Sensitivity = 0.84, Specificity = 0.78, Accuracy = 0.81) than the others. In conclusion, decision tree could be used to classify the uterine activities, and the Power and SamEn of un-normalized EHG segments were the most important characteristics in uterine contraction classification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.