Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To improve the performance of sodium silicate in scheelite flotation and allow the selective separation of scheelite from other semi-soluble salt-type minerals such as calcite, three acids, sulfuric, oxalic and for the first time hydrochloric are used to acidify sodium silicate (also called water glass). A literature review of previous usage of acidified water glass shows that no comparison between acids was made before, that comparisons with alkaline water glass were limited and that the idea that acidified water glass is more efficient at lower dosages has not been proven in scheelite flotation. As a consequence, the impact of the acid type, the ratio between acid and sodium silicate and acid dosage is tested in single mineral flotation and batch flotation experiments. All three acids allow a higher performance of acidified water glass compared to alkaline water glass at lower dosages and with little addition of acid: the tungsten recovery and grade are improved while silicates and to a lesser extent calcium-bearing minerals float less. The dosage of acid is less determining than the mass ratio of the acid to sodium silicate, except in the case of hydrochloric acid. Overall, the acid type does not matter as all three acids perform well in flotation, whereby oxalic and hydrochloric acid are better.
EN
Sodium silicate is one of the main depressants against calcite and fluorite in the scheelite flotation industry. In the first part of this article, the authors acidified sodium silicate (AWG) with three acids (sulfuric, oxalic and hydrochloric) to improve its performance. Results showed that acidified water glass outperforms alkaline water glass in terms of selectivity: it increases mainly the grade by further depressing silicates and calcium-bearing minerals. In most cases, AWG requires lower dosages to do so. The effect of acidified water glass is evaluated through Mineral Liberation Analysis (MLA), froth analysis, Raman and Nuclear Magnetic Resonance (NMR) spectroscopy in order to hypothesize its mechanism. MLA shows that AWG affects silicates and sulfides more intensely than semi-soluble salttype minerals. Froth observations indicate other species in solution associated to the acid having an impact on the flotation results. Raman spectroscopy and NMR measurements indicate that the solution undergoes deep depolymerization when water glass is acidified. Lower molecular weight silica species, specifically Si-O monomers such as SiO(OH)3- will be responsible for the depression of the gangue minerals and are the drivers of the selectivity of AWG, more than orthosilicic acid. Depolymerization is more or less effective depending on the mass ratio of the acid to water glass and depending on the acid.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.