Direct evaluation of ultrasonic signals requires data analyses with an acceptable level of noise. Ultrasonic signals represent a specific category of time domain signals to be analyzed. In order to increase a difference between the level of noise and the amplitude of the ultrasonic pulse a suitable method for signal filtering has to be used. Within this article we discuss and evaluate a novel signal denoising method. The S-transform for signal analysis and processing was used. This transformation has been recently introduced for ultrasonic echo analyses. Proposed transformation represents an intermediate stage between the Fourier transform analysis and the wavelet transform analysis. In order to filter ultrasonic signals from the Electromagnetic Acoustic Transducer (EMAT) with a high level of noise, new, different approach in signal filtering was developed based on an information fusion. Suggested method is able to process the pulse-echo signal in its full complexity. Proposed method offers good results in studied ultrasonic signals in comparison to digital filter or wavelet denoising.
PL
Bezpośrednia ocean sygnału ultradźwiękowego wymaga analizy danych obciążonych szumami. W celu zwiększenia różnicy między amplitudą sygnału a szumami użyto specjalnej metody filtrowania. Zastosowano transformatę S do analizy ultradźwiękowego sygnału echa. Tego typu transformata jest metodą pośrednia między transformatą Fouriera a transformatą falkową. Użyto nowej metody bazującej na fuzji informacji. Testy potwierdziły że nowa metoda może być skuteczniejsza niż filtrowanie cyfrowe czy odszumianie falkowe.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The detection of defects in aerospace structures with non-destructive techniques is an important requirement for quality checks not only during production phase but mainly during in-service maintenance operations. Visual inspection allows only the analysis of surface characteristics of materials. A deeper analysis is required for the characterisation of the widest defects types such as subsurface corrosion or cracks. For aerospace structures inspection, two different methods are mainly used: eddy current and ultrasonic testing. The first method is based on the induction of currents in the electrically conducting material to be tested. The perturbations of the eddy-current flow path due to physical, structural or metallurgical inhomogeneities are detected either using coils or magnetic field sensors. The second method uses high frequency sound waves which are sent into the tested object. A probe picks up the reflected waves and analysis of the received signal is done to locate flaws in the tested object. Ultrasonic inspection can detect defects such as cracks and discontinuities mainly inside the studied object. In this paper both techniques are addressed in order to conclude the different detection performances of these non-destructive inspection methods using different industrial and experimental probes. Two different eddy current probes were projected and implemented. One includes an excitation coil and two differential detection coils. Another having a similar excitation coil to generate the eddy currents in the material to be tested but using a Giant Magneto-Resistor (GMR) to asses the magnetic field induced. Both probes were tested with an aluminum standard airframe plate sample with and a dedicated data acquisition measuring system. This sample was also inspected using a certified industrial Eddy Current system. The ultrasonic method was tested using an Electromagnetic Acoustic Transducer (EMAT) probe and multidimensional signal processing. The same measurements performed with the experimental Eddy Current system were carried out with industrial piezoelectric ultrasonic transducers.
PL
Wykrywanie defektów w przemyśle lotniczym ma stawia wysokie wymagania zarówno na etapie produkcji jak i serwisowania. Żąda się aby było możliwe wykrywanie niewidocznych defektów, jak korozja czy pęknięcia. W przemyśle lotniczym stosowane są dwie główne metody inspekcji prądów wirowych i ultradźwiękowa. W pierwszej metodzie zmiany pola magnetycznego wykrywane są za pomocą cewki lub czujnika pola magnetycznego. W drugiej metodzie czujnik wykrywa falę odbitą. Metoda ultradźwiękowa pozwala na wykrycie pęknięć wewnątrz materiału. W prezentowanym artykule obie metody są analizowane. Zaprojektowano i zbadano dwa różne czujniki możliwe do zastosowania w metodzie prądów wirowych. Pierwszy z nich składa się z cewki magnesującej i dwóch cewek różnicowych. W drugim cewki różnicowe zastąpiono czujnikiem magnetorezystancyjnym GMR. Oba czujniki testowano na podłożu aluminiowym. W metodzie ultradźwiękowej testowano elektromagnetyczny czujnik akustyczny EMAT oraz wielowymiarowe przetwarzanie sygnału. Wyniki testów weryfikowano stosując czujnik piezoelektryczny.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.