Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.
2
Content available remote Synthesis and characterization of iron-filled multi-walled nanotubes
EN
The growth of iron filled multiwalled carbon nanotubes (Fe-MWCNT) using chemical vapour deposition (CVD) has been widely studied. Considering the remarkable magnetic and structural properties of Fe-MWCNT, these materials have been applied in numerous areas. In particular their biomedical application has been explored, where Fe-MWCNT can be used in hyperthermia, acting as a local nano-heater at cellular level. Regarding this aim, the reproducible and highly purified ferromagnetically filled samples of carbon nanotubes are still required. There are several parameters during the synthesis process that influence the properties of the nanotubes. The most favourable temperature of the CNT growth is probably one of the most important issues and its optimisation is crucial. In the current study, the Fe-MWCNT were grown at different temperatures ranging from 650 to 1050 C. Additionally, a comparison between two different CVD systems and two carbon sources are also here presented. The Fe-MWCNT were characterised using diverse techniques regarding the evaluation of their morphology, filling ratio, and purity. Observations showed a strong influence of the growth temperature on the morphology and properties of the Fe-MWCNT. The samples characterisation was performed using Raman spectroscopy, thermogravimetric analysis (TGA), X ray diffraction (XRD), and transmission electron microscopy analysis (TEM).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.