Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The ground disturbance caused by the tunnel construction will inevitably have an impact on the upper part of the constructed tunnel structure, and the railroad tunnel requires a very high level of control over the structural settlement deformation. For the problem of double-hole tunnel under the built tunnel, this paper takes Chongqing Mingyue Mountain Tunnel under the built Shanghai-Rong Railway Paihua Cave tunnel and Zheng-Yu Railway tunnel as the engineering background, and starts from the mechanism of ground loss caused by tunnel excavation, firstly, the settlement at the height of the existing tunnel strata is obtained through theoretical analysis, and the new Mingyue Mountain Tunnel under the Shanghai-Rong Railway tunnel is determined to be a more dangerous section. Further simulate and calculate the dynamic excavation process of the new double-hole tunnel underpass, and study the settlement deformation law of the Mingyue Mountain Tunnel underpassing the Hurong Railway Tunnel. According to the requirements of railroad tunnel for settlement deformation control, the new tunnel is determined to be constructed by step method to ensure the safety of railroad tunnel. The shortcomings of the theoretical calculation are analyzed to illustrate the important role of numerical simulation in the evaluation of tunnel underpass projects.
EN
All mechanical systems behave nonlinearly to a certain extent since there are always reasons for nonlinearities, such as friction and slip effects, in the actual structures. It is important to detect and identify the nonlinearity due to friction and contact in order to investigate their effect on the global behavior of the workpiece-fixture system. That is a prerequisite for modeling the dynamic contact behavior at the interface between the workpiece and clamping elements. In this research, the workpiece-fixture system was excited with a shaker using the swept sine signal. The nonlinearities could be detected by comparing and analyzing the frequency responses of the structures in Bode plots. However, the nonlinearities behaved differently at various frequencies within the observation range. Different mechanisms such as nonlinear stiffness and damping, micro-slip friction, are responsible for that. Then the nonlinear contact behavior at the clamping positions was successfully identified by means of the Hilbert transform. In addition, the clamping force directly influenced the nonlinear stiffness of the workpiece-fixture system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.