Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 14

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the ongoing transformation of marine fuels - from fossil fuels to transition fuels and the final target - hydrogen. This process was forced by the legal regulations of the International Maritime Organization and the European Union Parliament. The target year is 2050, but intermediate targets should be achieved in 2030 and 2040. The base year is 2008. By the end of 2022, an increasing trend of interest in more environmentally friendly fuels was observed. However, it is far from expectations. Analyzing ships under construction and those ordered, a much higher share of renewable fuels intended for propulsion of ships is observed. The shipowners took precautionary measures. They order ships for transitional fuels, which reduce investment and operating costs, assuming that far-reaching changes will take place after overcoming significant technological problems, lowering the prices of equipment and fuel. The article analyzes the ongoing processes, justifying the sense of the actions taken. The regulations being introduced have a significant impact on the ongoing transformation processes of marine fuels. It was noted that they may have serious consequences for maritime transport, indicating potential threats.
PL
W artykule przedstawiono postępującą transformację paliw żeglugowych - od paliw kopalnych do paliw przejściowych i docelowego - wodoru. Proces ten został wymuszony regulacjami prawnymi Międzynarodowej Organizacji Morskiej oraz Parlamentu Europejskiego. Rok docelowy to rok 2050, ale cele pośrednie powinny zostać osiągnięte w latach 2030 i 2040. Rokiem bazowym jest rok 2008. Do końca 2022 roku można było zaobserwować wzrost zainteresowania paliwami bardziej przyjaznymi dla środowiska. Daleko mu jednak do oczekiwań. Analizując statki w budowie i zamawiane, obserwuje się znacznie większy udział paliw odnawialnych przeznaczonych do napędu statków. Armatorzy podjęli środki ostrożności. Zamawiają statki na paliwa przejściowe, które obniżają koszty inwestycyjne i eksploatacyjne, zakładając, że daleko idące zmiany nastąpią po przezwyciężeniu istotnych problemów technologicznych, obniżeniu cen sprzętu i paliwa. W artykule poddano analizie zachodzące procesy, uzasadniając sens podejmowanych działań. Wprowadzane regulacje mają istotny wpływ na zachodzące procesy transformacji paliw żeglugowych. Zwrócono uwagę, że mogą one mieć poważne konsekwencje dla transportu morskiego, wskazując na ich potencjalne zagrożenia.
2
Content available Marine fuel from the past to the future
EN
Currently, about 90% of world transport is via water, which means that maritime transport is a decisive factor in the development of civilization. In order for it to effectively continue and compete with other means of transport, it is necessary to use the cheapest marine fuels on ships. The demand for machines generating mechanical energy to propel ships resulted in their dynamic development and, simultaneously, forced the search for primary energy sources (fuels) that enable the production of the working medium. The era of coal and petroleum fuels began in the 19th and 20th centuries, respectively. Today, in the 21st century, we stand at a crossroads – what next? The transition fuel will likely be LNG and biofuels. Ammonia will also occupy a significant share of the fuel market, but the target fuel will be hydrogen. Based on historical and contemporary sources, this article discusses the changes in the use of marine fuels that have occurred since the 19th century.
EN
Maritime transport contributes to stimulating the development of civilisation. According to the European Environment Agency, around 1/4 of the total CO2 emissions in the EU in 2019 came from the transport sector, of which 71.7% were from road transport. The share of CO2 emissions from maritime transport is estimated to be about 3% of the world's. In terms of energy demand for moving a specific load over a specific distance, it is currently the cheapest form of transport. The International Maritime Organization's activities aim to reduce the environmental impact of this form of transport. The article discusses the expected effects of the regulations introduced until 2023. Regulations have a significant impact on the increase in transport costs. There may be far-reaching changes in the shipping market that have an indirect (rather unintended) effect due to the introduced regulations. "Side effects" can be very severe, especially for shipowners with a small number of ships. The article attempts to draw attention to such threats.
EN
Deterioration in the performance of gas turbines is a well-known phenomenon occurring during their operation. The most important form is a decrease in the internal efficiency of the compressor and turbine due to fouling, which is the most significant deterioration problem for an operator. This article presents the effect of gas turbine fouling as a drop in airflow, pressure ratio, and compressor efficiency resulting in a reduction in power output and thermal efficiency. This resulted in a decrease in the nominal power of a gas turbine and an increase in the fuel consumption (heat rate). The fouling effects were described using the example of the MT30 marine gas turbine with a nominal power of 36 MW. The estimated profit loss during the operation of the gas turbine was within the range of 1–10% of the total fuel consumption cost. A 2% deterioration in the output of a gas turbine accounted for US$ 10,000–20,000 per year and 1 MW of gas turbine nominal power (according to marine fuel prices in 2019–2020) – this means at least US$ 300,000 annually for an MT30. Due to the low accuracy of fuel consumption measurements, another possibility was provided. The correlation between the gas turbine power deterioration and thermal efficiency was presented, which made it possible to estimate the increase in the specific and total fuel consumption when the nominal power deterioration is known. Two linear approximations were proposed to calculate increases in the annual operating costs for an MT30 due to fouling.
EN
The paper analyses the reasons for the interest in natural gas as a potential marine fuel to replace the existing fuels derived from crude oil. The increase in environmental awareness and the effects of human activity caused the process of searching for more environmentally friendly fuels. Naturally, interest has been shifted to a well-known energy source commonly found on Earth in quantities much more considerable than crude oil. This fuel, in the form of liquefied natural gas, seems to be an attractive substitute for the currently dominant types of marine fuels. The technologies of its extraction, liquefaction, storage and transport were mastered, and marine engines were adopted for its combustion as dual-fuel engines. The regulations introduced by the International Maritime Organization and the European Parliament, forcing the reduction of emissions of harmful substances into the atmosphere from the combustion of marine fuels, require taking action to meet them. The proposals for individual next 30 years are given. Due to the introduction of regulations to reduce carbon dioxide emissions, it is necessary to switch to fuels with a lower or zero carbon content or biofuels recognised as more environmentally friendly. Due to only 25% lower carbon content in methane with its higher lower heating value, it is possible to reduce the direct emission from this gas by about 30%. However, methane leaks occur in the processes from natural gas extraction to the energy effect in engines as a fuel, significantly worsening its image as an ecological fuel. Researches indicate that with current technologies, natural gas should not be recognised as an ecological fuel until gas leaks are significantly reduced. The article justifies why LNG should be considered a transient marine fuel, with the need to switch to other synthetic fuels, ammonia, and hydrogen.
6
EN
he article presents the regulations of the International Maritime Organization aimed at reducing carbon dioxide emissions from international shipping. One of the main objectives is to search the alternative to fossil fuels. The main problem is the lack of indication of the target fuel for shipping. The current changes, forced by international regulations, are made by the decisions of shipowners who themselves are looking for an alternative fuel that will enable them to continue their activities. Attempts have been made to use fuels considered as transient, which will be used in the perspective of about 10 years. However, this is too short a time compared to the life of the ship (20-30 years). This will force another change in the type of fuel used on ships still in operation, which will result in additional costs associated with the adaptation of the ship’s power plant fuel systems to a different type of fuel. The article evaluates the changes that currently taking place. Scenarios of the most likely directions of changes in a perspective of 2050 have been indicated.
EN
The paper has been presented the methods of nitrogen oxides emission reduction to fulfill the Tier 2 and Tier 3 requirements of the Annex VI of MARPOL Convention. It has been shown the development of marine two-stroke diesel engines and the change of nitrogen oxides emission from 1960 to 2000 and later up to 2020 after the implementation of NOx emission reduction methods. Specific fuel consumption before 2000, and as a prediction and given data in the manufacturers manuals for Tier 3 engines up to 2020, and as only a prediction up to 2030 has been analyzed and elaborated. Impact of nitrogen oxides reduction methods on the specific fuel consumption of the marine diesel engine has been evaluated. Additional emission of some gases to the atmosphere due to the implementation of reduction methods has been determined. EGR and SCR systems have got a lot of imperfections: required to install additional reduction systems (investment cost, required volume in the engine room), need maintenance and operation costs, produced wastes during treatment process. The estimated additional cost is about 0.8 USD/MWh of produced energy, taking into account only the cost of excessive used fuel. The whole increased cost may reach the level two-three times more due to cleaning systems investment costs, their operational cost and waste disposal. It has been the one of the reasons of worsening the transport effectiveness and competitiveness.
EN
This paper discusses the problem of atmosphere composition assessment related to entrance and inspection of a vessel cargo tank after washing, gas-freeing and ventilation. A correct assessment of the atmosphere before an entrance into the cargo tank or other enclosed spaces is a basic condition for the possibility of safe crew working. An assessment of the flammability hazard, presence of toxic or dangerous gases for human, and the oxygen concentration should be completed. In this regard, the ship-owner should prepare adequate procedures before an entrance, during work, and in emergency situations. The officers responsible should perform an assessment onboard the vessel their decisions are crucial for the safety of successive operations. A proper assessment of oxygen concentration in the air into the cargo tank or an enclosed space after the measurement is one of the primary problems which should be properly interpreted. This concerns such situations when the measured oxygen concentration into the tank reaches the value over 22% and below 20.6% of volume (mole) contribution (v/v). Air temperature in the 5–25°C range may create additional threats. This manuscript clarifies the controversial information included in manuals concerning the safety of entrance into enclosed spaces on vessels and the ship-owners procedures concerning the safety precautions for preparing, entrance, protection, and work inside the cargo tanks.
EN
The paper presents Energy Efficiency Operational Index (EEOI) introduced through International Maritime Organization (IMO) which defined the carbon dioxide emission as a result of transport specific cargo mass on specific distance. The total fuel consumption from all elements of vessel energetic system causes the carbon dioxide emission. Ship-owners should inform the marine administration about the fuel consumption from all vessels of 5000 tons of gross tonnage or more from 1st January 2018. In marine transport about 85% of carbon dioxide emission comes from such vessels. The calculating of EEOI is voluntary now but it is indicated to do it. It allows on an assessment the differences between the Energy Efficiency Design Index (EEDI) obligatory during design process of a vessel and its power plant and EEOI. Due to it may be estimated the correctness of vessel and power plant operation in exploitational conditions. The basic way of EEOI decreasing is slow steaming of a vessel. The power demand for propulsion (and fuel consumption) is proportional to the third power of vessel velocity (according to the propeller characteristics) on the other hand the hull resistance (the demand for thrust by propeller) is proportional to the second power of vessel velocity. As a result it causes the decreasing of total fuel consumption for covering the same distance but increasing the time of voyage. It is for acceptance during a bad economic situation. Although it will be no acceptable during a good economic situation when it will be required the increasing of vessel velocity (decreasing the time of voyage). The other effective methods are under research which allows to reach the same aim. It is known such methods of vessel operation which leading to the decreasing of that index. The paper shows these methods with their characteristics.
PL
W artykule omówiono wprowadzony przez Międzynarodową Organizację Morską (IMO) wskaźnik zwany eksploatacyjnym indeksem efektywności energetycznej statku (EEOI), który określa emisję dwutlenku węgla w wyniku transportu jednostki masy ładunku na jednostkową odległość. Za emisję CO2 odpowiada zużycie paliwa przez wszystkie elementy okrętowego układu energetycznego. Od 1 stycznia 2018 r. armatorzy muszą zgłaszać do administracji morskiej ilość zużytego paliwa przez poszczególne statki o tonażu od 5000, które odpowiadają za 85% zużycia paliwa w transporcie morskim. Wyznaczanie wskaźnika EEOI jest obecnie dobrowolne, ale wskazane, aby go wyznaczać. Pozwala to na określenie różnic między projektowym indeksem efektywności energetycznej statku (EEDI), który jest obligatoryjny w procesie projektowania statku i elementów układu energetycznego, a eksploatacyjnym. Dzięki temu można oszacować poprawność eksploatacji siłowni i statku w warunkach rzeczywistych. Podstawowym sposobem zmniejszenia wskaźnika EEOI jest zmniejszenie prędkości eksploatacyjnej statku. Zapotrzebowanie na moc napędu (i zużycie paliwa) jest proporcjonalne do trzeciej potęgi prędkości statku (wg tzw. charakterystyki śrubowej), natomiast opór kadłuba (zapotrzebowanie na siłę naporu przez śrubę okrętową) jest proporcjonalny do potęgi drugiej prędkości statku. Skutkuje to zmniejszeniem zużycia paliwa na pokonanie tej samej drogi, ale wydłuża czas podróży. W okresie dekoniunktury na rynku żeglugowym jest to do przyjęcia. Jednak wraz z pojawieniem się oznak koniunktury, które będą wymagać wzrostu prędkości statku (skrócenia czasu podróży) będzie to niemożliwe. Poszukuje się więc innych skutecznych metod, które pozwolą osiągnąć ten sam cel. Znane są możliwości takich sposobów eksploatacji statku, które prowadzą do zmniejszenia tego wskaźnika. W artykule wskazano na te metody wraz z ich charakterystyką.
EN
Paper discusses the problem of pressure drop in the process of working medium flow through combustion chamber of gas turbine. The pressure loss is an internal disadvantage of combustion chamber depends on many parameters, especially the chamber design and working gas flowrate. There is a problem to calculate the parameters of working medium in characteristic points of gas turbine thermodynamic cycle because the total pressure before and after combustion chamber is not known. There is a lack of information from manufacturer about it and in publications as well (mainly no experimental data, only theoretical considerations). It will be important information because the pressure drop has an meaningful influence on gas turbine performance. The paper presents an estimation of decreasing the performance of gas turbine from discussed reason. Author of that manuscript recognized the necessity of showing the importance of that parameter and turning the attention to not fully recognized problem.
PL
W artykule omówiono problem spadku ciśnienia w procesie przepływu czynnika roboczego przez komorę spalania w turbinie gazowej. Spadek ciśnienia jest wewnętrzną wadą turbiny zależną od wielu parametrów, głównie od projektu komory i natężenia przepływu gazu przez nią. Problemem jest wyznaczenie parametrów cyklu termodynamicznego turbiny w charakterystycznych punktach, ponieważ nie jest znane całkowite ciśnienie przed i za komorami spalania. Występuje brak tej informacji ze strony producenta urządzenia, jak i również w publikacjach naukowych (brak danych eksperymentalnych, tylko rozważania i modelowania teoretyczne). Jest to ważna informacja, ponieważ spadek ciśnienia w komorze spalania ma istotny wpływ na osiągi turbiny gazowej. W artykule przedstawiono oszacowanie obniżenia osiągów turbiny z omawianego powodu. Autor artykułu uznał potrzebę zwrócenia uwagi na ten parametr i nie do końca rozeznany problem.
EN
The paper presents problems of limitation the nitrogen oxides emission from marine diesel engines. The emission of noxious substances from combustion of marine fuels is restricted in respect of the atmosphere protection, International Maritime Organization (IMO) regulations and others. The IMO requirements were determined by time of being in force. The first tier started in 2000 year, the second in 2011, the third is being valid from 2016 on USA waters and in some chosen port areas (from 2021 will be obligatory on Baltic Sea, North Sea and English Channel) and it is a necessity to comply those last requirements. In case of NOx – between the first and second tier the emission was limited 20%, while the third step was limited 80% of the first one. This is a very great challenge, because in nowadays marine diesel engines and marine heavy and diesel oils generally applied, it would seem impossible comply those requirements. It was formed environmental controlled areas of NOx emission (ECA) and they will extend. Governments of some countries (USA, Norway) were introduced on own territorial waters the requirements of NOx and SOx emission. In case of exceeding the limits (or a lack of the proper certificates) it was imposed an ecological charge (a form of tax) or the interdict of entrance on regulated water zones. In the paper it was given an attention to the new challenges for engine producers and ship-owners of fulfilling tier 3 standards or search new substitute solutions. The applying solutions for nitrogen oxides emission limitations cause the decreasing of engine efficiency and increasing the fuel consumption (and carbon dioxide emission) up to ten percent. Due to regulations of marine environment protection they generate additional investment and operation cost for ship-owners and charterers.
PL
W artykule przedstawiono problemy ograniczania emisji tlenków azotu z okrętowych silników wysokoprężnych. W celu ochrony atmosfery przed emisją szkodliwych substancji z procesu spalania paliw okrętowych wprowadzono regulacje Międzynarodowej Organizacji Morskiej (IMO) i inne. Wymagania IMO określają czas wejścia w życie (obowiązywania). Pierwsze ograniczenie emisji tlenków azotu (Tier 1) obowiązuje od 2000 roku, drugie (Tier 2) od 2011, natomiast trzecie (Tier 3) obowiązuje od 2016 roku na wodach amerykańskich i wybranych obszarach portowych (od 2021 roku będzie obowiązywać na Morzu Bałtyckim i Północnym oraz Kanale La Manche) oraz zachodzi konieczność spełnienia tych wymagań. Dla tlenków azotu (NOx) – pomiędzy pierwszym a drugim limitem jest różnica 20%, podczas gdy trzeci limit jest o 80% mniejszy od pierwszego. Jest to wielkie wyzwanie, ponieważ w okrętowych silnikach wysokoprężnych stosuje się paliwa ciężkie i oleje napędowe, wydaje się niemożliwe spełnienie tych wymagań. Utworzono obszary kontroli emisji (ECA) tlenków azotu i te obszary będą się powiększać. Rządy niektórych krajów (USA, Norwegia) wprowadziły własne wymagania na ich wodach terytorialnych odnośnie emisji tlenków azotu i tlenków siarki. W artykule zwrócono uwagę na nowe wyzwania dla producentów silników i armatorów statków w celu spełnienia standardów emisji w limicie Tier 3 lub poszukiwania innych równoważnych rozwiązań. Stosowane rozwiązania ograniczenia emisji tlenków azotu zmniejszają sprawność silników oraz zwiększają zużycie paliwa (i emisji dwutlenku węgla) nawet o dziesięć procent. Z powodu wprowadzenia regulacji chroniących środowisko morskie, generują one dodatkowe koszty inwestycyjne i eksploatacyjne dla armatorów i czarterujących.
EN
Thrust vector control systems of propulsion systems of dynamic positioning vessels are commonly applied on vessels with DP2 and DP3 class of DP. It was submitted the ways of providing information to dynamic positioning operator DPO about detecting of suspicion of failure in specific thruster and shown the ways of response in such situations. In the case of failure and shut down one of working thrusters, it must be done the possibility assessment of continuation of DP system safe operation. If such situation is not possible, it should be considered the work of DP system on limitations. It was indicated on safety threats during operation of DP systems resulting from system failure or even the design faults. It commonly applies the failure mode and effect analysis (FMEA or FMECA) from the design phase through sea trials until to the verification process during operation. It allows the elimination of majority of faults in the DP systems. It was communicated the basic conditions of safe operation of vessels with DP systems and the examples of conditions which releasing the readiness signal of DP propulsion system elements. Observed development of control and automatics systems will result in increasing the safety of DP systems operation.
EN
It was presented short analysis of connection ISM Code on vessels on the number of incidents threats. Introduced into force ISM Code in 1998 and 2002 (contained in chapter 9 of SOLAS Convention) as obligatory on vessels have had the aim of decreasing the number of injuries, serious injuries, fatalities, other incidents threats and total loses during vessel operation in maritime shipping. The next aim vicariously was improving the maritime safety and prevention of marine pollution from ships. As a result of ship-owner and crew requirements, it should eliminate from shipping market the bad and poor management systems of charterers or ship operators and improper qualified crewmembers. The company and the ship shall comply with the requirements of ISM Code and the company shall have the Document of Compliance (referred to in regulation 4 of ISM Code). After about twenty years when ISM Code was in force some comparisons, conclusions and remarks were presented. It is observed the decreasing number of vessel total losses but other comparisons is not so clear due to different definitions of incident being obligatory in states of flag and different databases in the different Memoranda of Understanding. The influence of introducing ISM Code on maritime shipping is serious in good or bad matters (e.g. the increasing of bureaucracy).
EN
In this paper was presented the problems of methane leakages during cargo operations on LNG carriers. Also the leakages are possible on LNG fueled vessels. Due to green-house effect from methane on the atmosphere it should be done some measures to avoid it. Building the cargo tanks with very high capacity, utilization of better thermal insulations limits the quantity of boil-off (BOG). It is used as a fuel in marine power plant, only the overage should be liquefied again. The leakages attend all cargo operations which methane goes directly to the atmosphere through pressure-vacuum valves and gas freeing installation to mast riser or by the ventilation system from cargo pump or compressor room. To minimize the slip on LNG carriers the re-liquefaction systems are installed. They are based on cooling systems which boil-off gas (mainly methane) is liquefied at ambient pressure in temperature about - 161.5°C by pre-cooled nitrogen gas at temperature about -180°C. Compressed nitrogen to a pressure about 25MPa through multistage compressors with intercooling systems is expanded step by step (in intercoolers) to pressure about ambient reaches the temperature about -180°C. The re-liquefaction system needs delivering a lot of electric energy. The total level of methane leakages from mining to the last consumer may be different and sometimes very high. The leakage level starts as minimal 1% and may be raised up to 10%. It was indicated the undertaken actions and next possibilities of methane slip limitations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.