The paper presents the impact of the weather on inland navigation conditions. Each mode of transportation depends on the weather, but inland navigation is the one most affected by it. Inland navigation is strongly dependent on the water level in a river bed, which is a result of weather conditions. In Poland the depth of inland waterways is relatively low, but the biggest consideration is the weather which results in the variability of this level. The variability of hydrotechnical conditions results in problems with planning for transportation. It is widely known that water is one of the most important factors in the hydrotechnical conditions of inland navigation and it is directly correlated with the weather. In this paper the authors present the impact of temperature on the duration of the navigation season on the Border Oder, based on research conducted in the years from 2004 to 2018 and the authors also investigated important changes in the weather conditions during last few years. The results showed that the number of navigable days has dropped significantly over the investigated period as a result of changes in the climate.
The number of accidents on rural roads still represents a higher percentage of accidents than those occurring on built-up areas and motorways. Many countries are working on the definition and implementation of strategies that relate to the improvement of traffic safety on rural roads. This paper presents an approach to the analysis of traffic safety and the frequency of traffic accidents. The developed model is based on reliability theory and the application of the reliability reallocation model on data concerning traffic accidents that have occurred on rural roads. To test the model, a state road made up of 20 sections of a total length of 255 km was selected. The analysis of traffic safety on the observed road covers the period between the years 2005 and 2013 (this period is divided into two intervals 2005–2009 and 2010–2013). Following the basic analyses of traffic safety that are positioned in a space-time coordinate system, the next step is the reliability analysis and the ranking of the section. In this paper, the reallocation method was observed from the aspect of the reduction in accident frequency by 10% and the application of the ARINC apportionment technique.
This paper analyses the management process of the vessel traffic control on one-way section on navigable canal with the adaptive time-sequential filter (traffic lights). One-way section on canal significantly decreases waterway capacity and requests special attention in control and regulation of the vessel traffic. The vessel traffic is a stochastic variable, and the vessel traffic control needs to be flexible and adaptive in order to achieve the required traffic flow with minimal delays. On the one-way section, two independent variable vessel flows from opposite directions are encountered, and fixed (predefined) signal plans lead to an increase in vessel delays. An appropriate solution is development of a Fuzzy Control System (FCS) for the vessel traffic control. A control algorithm is designed according to a set of linguistic rules that describes input parameters for the control strategy. The estimated and approximate input parameters are implemented in the algorithm as fuzzy sets. The final result of the developed algorithm is the traffic light scheme (duration of green light for certain direction). The presented control system can be used as an adaptive automatic control system for the vessel traffic control processes on navigable canals or on critical sections of other waterways.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.