Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Computational Intelligence for Life Sciences
EN
Computational Intelligence (CI) is a computer science discipline encompassing the theory, design, development and application of biologically and linguistically derived computational paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve complex computational problems by taking inspiration from natural phenomena. In an intriguing turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of problems related to nature itself. In this paper we present a variety of CI methods applied to three problems in life sciences, highlighting their effectiveness: we describe how protein folding can be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by means of Swarm Intelligence. We show that CI methods can generate very high quality solutions, providing a sound methodology to solve complex optimization problems in life sciences.
EN
Natural phenomena and mechanisms have always intrigued humans, inspiring the design of effective solutions for real-world problems. Indeed, fascinating processes occur in nature, giving rise to an ever-increasing scientific interest. In everyday life, the amount of heterogeneous biomedical data is increasing more and more thanks to the advances in image acquisition modalities and high-throughput technologies. The automated analysis of these large-scale datasets creates new compelling challenges for data-driven and model-based computational methods. The application of intelligent algorithms, which mimic natural phenomena, is emerging as an effective paradigm for tackling complex problems, by considering the unique challenges and opportunities pertaining to biomedical images. Therefore, the principal contribution of computer science research in life sciences concerns the proper combination of diverse and heterogeneous datasets — i.e., medical imaging modalities (considering also radiomics approaches), Electronic Health Record engines, multi-omics studies, and real-time monitoring — to provide a comprehensive clinical knowledge. In this paper, the state-of-the-art of nature-inspired medical image analysis methods is surveyed, aiming at establishing a common platform for beneficial exchanges among computer scientists and clinicians. In particular, this review focuses on the main nature-inspired computational techniques applied to medical image analysis tasks, namely: physical processes, bio-inspired mathematical models, Evolutionary Computation, Swarm Intelligence, and neural computation. These frameworks, tightly coupled with Clinical Decision Support Systems, can be suitably applied to every phase of the clinical workflow. We show that the proper combination of quantitative imaging and healthcare informatics enables an in-depth understanding of molecular processes that can guide towards personalised patient care.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.