Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The presented results are for the numerical verification of a method devised to identify an unknown spatio-temporal distribution of heat flux that occurs at the surface of a thin aluminum plate, as a result of pulsed laser beam excitation. The presented identification of boundary heat flux function is a part of the newly proposed laser beam profiling method and utilizes artificial neural networks trained on temperature distributions generated with the ANSYS Fluent solver. The paper focuses on the selection of the most effective neural network hyperparameters and compares the results of neural network identification with the Levenberg–Marquardt method used earlier and discussed in previous articles. For the levels of noise measured in physical experiments (0.25–0.5 K), the accuracy of the current parameter estimation method is between 5 and 10%. Design changes that may increase its accuracy are thoroughly discussed.
EN
The paper presents development of an experimental stand with centrally located specimen for the investigation of heating and drying processes in porous building materials. Additionally, the paper contains preliminary results of measurements which test and verify the assumed operation conditions of the stand. In order to control parameters of air which was used to heat and dry the specimen, the stand was operating in a closed loop and was equipped with several elements, i.e., the cooler (humidity condenser), fan with variable rotation speed, humidifier and heater. Moreover, the stand consisted of two square and parallel ducts with air streams which had identical parameters. This allowed for two measurements at the same time.
PL
W artykule przedstawiono prace nad stanowiskiem doświadczalnym z centralnie umieszczoną próbką do badań procesu grzania i suszenia porowatych materiałów budowlanych. Dodatkowo w artykule zawarto wstępne wyniki pomiarów, które weryfikują zakładane warunki pracy stanowiska. W celu kontroli parametrów powietrza wykorzystywanego do podgrzewania i suszenia próbki, stanowisko pracowało w pętli zamkniętej i było wyposażone w kilka elementów, tj. chłodnicę (jednocześnie osuszacz powietrza), wentylator o zmiennej prędkości obrotowej, nawilżacz i nagrzewnicę. Aby uzyskać dwa strumienie powietrza o identycznych parametrach, pozwalające na wykonanie dwóch pomiarów w tym samym czasie i weryfikację powtarzalności proponowanej metody badawczej, układ składał się z dwóch kwadratowych i równoległych kanałów pomiarowych. Próbka została umieszczona w środku każdego kanału, co pozwoliło na wielowymiarowy transport ciepła i wilgoci wewnątrz próbki. W trakcie pomiarów zmierzono wilgotność w różnych położeniach i całkowitą wilgotność próbki, stosując odpowiednio system mierników rezystancji i siłomierza. Zmienność temperatury próbki mierzono kilkoma termoparami typu K i termografią w podczerwieni. Pomiary eksperymentalne przeprowadzono dla następujących zakresów prędkości powietrza, temperatury i wilgotności względnej: 0,1-10 m/s, 15o-60o i 10-90%. Podczas pomiarów rejestrowano i analizowano czasowe zmiany temperatury i wilgotności w kilku punktach próbki oraz zmiany całkowitej ilości wilgoci w próbce.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.