Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Future wireless communication networks will be largely characterized by small cell deployments, typically on the order of 200 meters of radius/cell, at most. Meanwhile, recent studies show that base stations (BS) account for about 80 to 95 % of the total network power. This simply implies that more energy will be consumed in the future wireless network since small cell means massive deployment of BS. This phenomenon makes energy-efficient (EE) control a central issue of critical consideration in the design of future wireless networks. This paper proposes and investigates (the performance of) two different energy-saving approaches namely, adaptive-sleep sectorization (AS), adaptive hybrid partitioning schemes (AH) for small cellular networks using smart antenna technique. We formulated a generic base-model for the above-mentioned schemes and applied the spatial Poisson process to reduce the system complexity and to improve flexibility in the beam angle reconfiguration of the adaptive antenna, also known as a smart antenna (SA). The SA uses the scalable algorithms to track active users in different segments/sectors of the microcell, making the proposed schemes capable of targeting specific users or groups of users in periods of sparse traffic, and capable of performing optimally when the network is highly congested. The capabilities of the proposed smart/adaptive antenna approaches can be easily adapted and integrated into the massive MIMO for future deployment. Rigorous numerical analysis at different orders of sectorization shows that among the proposed schemes, the AH strategy outperforms the AS in terms of energy saving by about 52 %. Generally, the proposed schemes have demonstrated the ability to significantly increase the power consumption efficiency of micro base stations for future generation cellular systems, over the traditional design methodologies.
EN
Optimal random network coding is reduced complexity in computation of coding coefficients, computation of encoded packets and coefficients are such that minimal transmission bandwidth is enough to transmit coding coefficient to the destinations and decoding process can be carried out as soon as encoded packets are started being received at the destination and decoding process has lower computational complexity. But in traditional random network coding, decoding process is possible only after receiving all encoded packets at receiving nodes. Optimal random network coding also reduces the cost of computation. In this research work, coding coefficient matrix size is determined by the size of layers which defines the number of symbols or packets being involved in coding process. Coding coefficient matrix elements are defined such that it has minimal operations of addition and multiplication during coding and decoding process reducing computational complexity by introducing sparseness in coding coefficients and partial decoding is also possible with the given coding coefficient matrix with systematic sparseness in coding coefficients resulting lower triangular coding coefficients matrix. For the optimal utility of computational resources, depending upon the computational resources unoccupied such as memory available resources budget tuned windowing size is used to define the size of the coefficient matrix.
EN
One of the key advancement in next-generation 5G wireless networks is the use of high-frequency signals specifically those are in the millimeter wave (mm-wave) bands. Using mmwave frequency will allow more bandwidth resulting higher data rates as compared to the currently available network. However, several challenges are emerging (such as fading, scattering, propagation loss etc.), when we propagate the radio signal at high frequencies. Optimizing propagation parameters of the mm-wave channels system are much essential for implementing in the realworld scenario. To keep this in mind, this paper presents the potential abilities of high frequencies signals by characterizing the indoor small cell propagation channel for 28 GHz, 38 GHz, 60 GHz and 73 GHz frequency band, which is considered as the ultimate frequency choice for many of the researchers. The most potential Close-In (CI) propagation model for mm-wave frequencies is used as a Large-scale path loss model. The results have been collected concerning the capacity of users to evaluate the average user throughput, cell-edge user throughput, average cell throughput, spectral efficiency and fairness index. The statistical results proved that these mm-wave spectrum gives a sufficiently greater overall performance and are available for use in the next generation 5G mobile communication network.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.