The paper examines the effect of precipitation hardening temperature on selected properties of AlSi5Cu2Mg alloy alloyed by 0.20 wt.% of Zr. The newly developed AlSi5Cu2Mg alloy intended for cylinder head castings is specific due to its limited Ti content, which prevents the use of standard Al-Ti-B type grain refiners. Zr added in the form of AlZr20 master alloy acts as a grain refiner. The grain refinement effect of Zr positively affects the mechanical properties. However, the physical properties defining the lifetime of cylinder head castings are not affected by the presence of Zr-rich phases. For this reason, the research focuses on the proposal of the optimal T6 heat treatment procedure in order to positively influence the physical and mechanical properties of the AlSi5Cu2Mg alloy. For the research, four T6 thermal regimes with graduated aging temperatures by 20°C from 180 to 240°C ± 5°C were selected. The results showed that increasing aging temperature positively affects physical properties, especially thermal conductivity, and mechanical properties of Rm, Rp0.2, and HBW. On the other hand, with increasing aging temperature up to 220°C ± 5°C, a negative decrease in ductility was achieved. Optimum ductility of, especially, AlSi5Cu2Mg alloy with 0.20 wt.% Zr was achieved by the T6-240 thermal regime. Optimal combination of thermal conductivity and mechanical properties of the AlSi5Cu2Mg alloy with 0.20 wt.% Zr was achieved by the T6-240 heat treatment due to the requirements placed on cylinder head castings.
The paper focuses on the investigation of the influence of Ti on selected properties of the hypoeutectic aluminium alloy AlSi5Cu2Mg. AlSi5Cu2Mg alloy finds application in the field of production of high-strength cylinder head castings intended for the automotive industry due to the optimal combination of mechanical, physical and foundry properties. In commercial production, the maximum Ti content is limited by the manufacturer (Ti max. = 0.03 wt.%), which significantly limits the possibilities of refinement the alloy with Ti-based grain refiners. Therefore, the possibility of increasing the Ti content beyond the manufacturer's recommendation is considered in this work. The main aim of the work is to evaluate the influence of graded Ti addition (0.1; 0.2; 0.3 wt.% Ti) on the resulting mechanical and physical properties of the AlSi5Cu2Mg alloy. Simultaneously, the influence of increased Ti content on the microstructure of AlSi5Cu2Mg alloy is evaluated. The alloying element was introduced into the melt in the form of AlTi5B1 master alloy. The effect of T6 heat treatment on the resulting mechanical and physical properties and microstructure of the hypoeutectic AlSi5Cu2Mg alloy with graded Ti addition was also investigated in the experimental work.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.