Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In kinematic observation processing the equivalence between the state space approach (Kalman filtering plus smmothing) and the last squares approach including dynamic has been shown (Albertellat al. 2006). we have specialized the proposed batch solution (least squares including dynamic), considering the case of discrete-time linear systems with constant biases, applying the algorithm to estimate the float ambiguities and their variance-covariance matrix in GPS observations (Roggero, 2006). The improvements in ambiguity fixing performances will be shown, through the ADOP, the dimension of the search space and the success rate.
EN
Kinematic GPS observation processing requires robustness, especially in noisy environments. Ambiguity resolution robustness can be improved with multi base approach and parameters constraining. We consider a discrete-time linear systems with known dynamics, produced by a GPS antenna array mounted on a vehicle. Simulated and real data examples are given, where both system dynamics and geometric constraints strengthen ambiguities fixing. The developed algorithm works in a multi-base approach with the simplifying hypothesis of short baselines.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.